摘要
This paper studies stochastic resonance (SR) phenomenon in a parallel array of linear elements with noise. Employing the signal-to-noise ratio (SNR) theory, it obtains the output SNR, and investigates the effects on the output SNR of the system with signal-independent noise and signal-dependent noise respectively. Numerical results show: the curve of the output SNR is monotone with signal-independent noise; whereas SR appears with signal-dependent noise. Moreover, the output SNR enhances rapidly with the increase of N which is the number of elements in this parallel array linear system. This result may provide smart array of simple linear sensors which are capable of acting as noise-aided amplifiers.
This paper studies stochastic resonance (SR) phenomenon in a parallel array of linear elements with noise. Employing the signal-to-noise ratio (SNR) theory, it obtains the output SNR, and investigates the effects on the output SNR of the system with signal-independent noise and signal-dependent noise respectively. Numerical results show: the curve of the output SNR is monotone with signal-independent noise; whereas SR appears with signal-dependent noise. Moreover, the output SNR enhances rapidly with the increase of N which is the number of elements in this parallel array linear system. This result may provide smart array of simple linear sensors which are capable of acting as noise-aided amplifiers.