摘要
The rapid internal conversion dynamics at room temperature is determined by using the femtosecond time-resolved fluorescence depletion measurements of a complex solvated molecule of LD 700 (rhodamine 700) combined with steadystate absorption and fluorescence spectroscopy, as well as quantum chemical calculation. The molecule is excited by a 50 fs laser pulse at 400 nm which directly populated the highly excited singlet state, the rapid internal conversions (ICs) are observed, which leads to the directional changes of the emission transition moment following photoexcitation to the highly excited singlet state S5 of LD 700.
The rapid internal conversion dynamics at room temperature is determined by using the femtosecond time-resolved fluorescence depletion measurements of a complex solvated molecule of LD 700 (rhodamine 700) combined with steadystate absorption and fluorescence spectroscopy, as well as quantum chemical calculation. The molecule is excited by a 50 fs laser pulse at 400 nm which directly populated the highly excited singlet state, the rapid internal conversions (ICs) are observed, which leads to the directional changes of the emission transition moment following photoexcitation to the highly excited singlet state S5 of LD 700.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos 20773139,20825314 and 20833008)
the State Key Program for Basic Research of China (Grant Nos 2006CB806000 and 2007CB815200)
the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No KJCX2.Y.W.H06)