期刊文献+

The recording of digital hologram at short distance and reconstruction using convolution approach 被引量:1

The recording of digital hologram at short distance and reconstruction using convolution approach
下载PDF
导出
摘要 By adopting in-line lensless Fourier setup and phase-shifting technique, we recorded the phase-shifting digital hologram at short distance. As the Fresnel diffraction condition is no longer valid, the convolution approach is chosen for the reconstruction. However, the simulated reference wave for the reconstruction would suffer from severe undersampling due to the comparatively large pixel size. To solve this problem, sine-interpolation is introduced to get the pixel-size of the hologram reduced prior to the reconstruction. The experimental results show that an object image of high fidelity is obtained with this method. By adopting in-line lensless Fourier setup and phase-shifting technique, we recorded the phase-shifting digital hologram at short distance. As the Fresnel diffraction condition is no longer valid, the convolution approach is chosen for the reconstruction. However, the simulated reference wave for the reconstruction would suffer from severe undersampling due to the comparatively large pixel size. To solve this problem, sine-interpolation is introduced to get the pixel-size of the hologram reduced prior to the reconstruction. The experimental results show that an object image of high fidelity is obtained with this method.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第1期189-194,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos 60747001 and 60467003)
关键词 short-distance digital holography convolution algorithm sinc-interpolation short-distance digital holography, convolution algorithm, sinc-interpolation
  • 相关文献

参考文献15

  • 1Schnars U, Kreis T and Jucptner W 1996 Opt. Eng. 35 977
  • 2Lee S and Kim S 2004 Meas. Sci. Technol. 15 664
  • 3Marquet P, Rappaz B and Magistretti P J 2005 Opt. Lett. 30 468
  • 4Haddad W S, Cullen D, Solem J C, Longworth J W, McPherson A, Boyer K and Rhodes C K 1992 Appl. Opt. 31 4973
  • 5Binet R, Colineau J and Lehureau J C 2002 Appl. Opt. 41 4775
  • 6Wagner C, Seebacher S, Osten W and Juptner W 1999 Appl. Opt. 38 4812
  • 7Zhang T and Yamaguchi I 1998 Opt. Left. 23 1221
  • 8Takaki Y and Ohzu H 1999 Appl. Opt. 38 2204
  • 9Lu X, Zhang Y, Zhong L, Luo Y and She C 2004 Opt. Lett. 29 614
  • 10Pcdrini G, Schedin S and Tiziani H J 2001 J. Mod. Opt. 48 1035

同被引文献12

  • 1Goodman J W.傅里叶光学导论.北京:电子工业出版社,2006.
  • 2Xu L, Peng X, Miao J, et al. Studies of digital microscopic holography with applications to mierostructure testing[J]. Applied Optics, 2001,40(28): 5046-5051.
  • 3Binet R, Colineau J, Lehureau J-C. Short-range synthetic aperture imaging at 633 nm by digital holography[J]. Ap- plied Optics, 2002, 41(23): 4775-4782.
  • 4Takaki Y, Ohzu H. Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy[J]. Ap- plied Optics, 1999,38( 11): 2204-2211.
  • 5Haddad W S , Cullen D, Solem J C, et al. Fourier-trans- form holographic microscope[J]. Applied Optics, 1992,31 (24): 4973-4978.
  • 6Yu L, Kim M K. Pixel resolution control in numerical re- construction of digital holography[J]. Optics Letters, 2006,31 (7): 897-899.
  • 7Ln X, Zhang Y, Zhong L, et al. Fourier algorithm method for reconstruction of large-aperture digital holograms based on phase compensation[J]. Optics Letters, 2004,29 (5): 614-616.
  • 8Xu L, Peng X, Guo Z, et al. Imaging analysis of digital holography[J]. Optics Express, 2005,13 (7): 2444-2452.
  • 9Mendlovic D, Lohmann A W. Space-bandwidth product adaptation and its application to superresolution: funda- mentals[J]. Journal of the Optical Society of America A, 1997, 14(3): 558-562.
  • 10Lohmann A W, Dorsch R G, Mendlovic D, et al. Space-bandwidth product of optical signals and systems[J]. Journal of the Optical Society of America A, 1996,13 (3): 470-473.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部