摘要
This paper carries out the density functional theory calculations to study the adsorbate-substrate interaction between tetracene and Cu substrates (Cu (110) and Cu (100) surface). On each of the surfaces, two kinds of geometry are calculated, namely 'flat-lying' mode and 'upright standing' mode. For 'flat-lying' geometry, the molecule is found to be aligned with its longer molecular axis along close-packed direction of the substrate surfaces. For 'upright standing' geometry, the long axis of tetracene is found to be parallel to the surface normal of the substrate on Cu (110) surface. However, tetracene appears as 'tilted' mode on Cu (100) surface. Structures with 'flat-lying' mode have much larger adsorption energy and charge transfer upon adsorption than that with 'upright standing' mode, indicating the preference of 'flat-lying' geometry on both Cu (110) and Cu (100) surface.
This paper carries out the density functional theory calculations to study the adsorbate-substrate interaction between tetracene and Cu substrates (Cu (110) and Cu (100) surface). On each of the surfaces, two kinds of geometry are calculated, namely 'flat-lying' mode and 'upright standing' mode. For 'flat-lying' geometry, the molecule is found to be aligned with its longer molecular axis along close-packed direction of the substrate surfaces. For 'upright standing' geometry, the long axis of tetracene is found to be parallel to the surface normal of the substrate on Cu (110) surface. However, tetracene appears as 'tilted' mode on Cu (100) surface. Structures with 'flat-lying' mode have much larger adsorption energy and charge transfer upon adsorption than that with 'upright standing' mode, indicating the preference of 'flat-lying' geometry on both Cu (110) and Cu (100) surface.
基金
Project supported by National Natural Science Foundation of China (Grant Nos 60506019 and 10674118)