期刊文献+

基于单位圆弧段逼近的Bézier曲线等距线生成算法

Bézier Curve Offset Based on Circular Arc Approximation
下载PDF
导出
摘要 提出一种用四次Bézier曲线逼近单位圆弧段(Unit Circular Arcs)的方法及其详细误差函数分析。使用这种方法,给出一种使用同阶Bézier曲线逼近给定Bézier曲线等距线的算法。在Matlab7.0上实现了该算法,试验表明,新算法比Lee和Ahn所提出的算法有更高的精度和计算效率。由于B样条和NURBS曲线可以认为由多段Bézier曲线组成,因此,新算法为B样条和NURBS曲线等距线的求解提供了一种新的途径。 An approximation method and detail error function analysis for circular arcs by quartic Bezier curves is proposed. Using this method, a new approximation algorithm of the offset curve of given plane Bezier curve by Bezier curve of the same degree is presented. The new algorithm has been implemented in software of Matlab 7.0 and the experiments show that new algorithm can achieve more precision and high efficiency than Lee or Ahn algorithm. Because B-spline and NURBS curve can be considered to be composed by piecewise Bezier curves, so the algorithm provides a new way of achieving offset curve of B-spline and NURBS.
出处 《工程图学学报》 CSCD 北大核心 2009年第1期85-90,共6页 Journal of Engineering Graphics
基金 国家自然科学基金资助项目(50863003) 江西省教育厅科技计划课题资助项目(赣教技字(2007[27]))
关键词 计算机应用 Bézier曲线等距线 圆弧段逼近 卷积曲线 HAUSDORFF距离 computer application offset of Bezier curve circular arc approximation convolution curve Hausdorff distance
  • 相关文献

参考文献10

  • 1Frank Chuang S H, Shih J L. A novel approach for computing C2-continous offset of NURBS curves [J]. The International Journal of Advanced Manufacturing Technology, 2006, 29(1): 151 - 158.
  • 2郑志浩,汪国昭.用三次PH曲线构造平面Bézier曲线的等距线算法[J].计算机辅助设计与图形学学报,2004,16(3):324-330. 被引量:15
  • 3陈雪娟.平面Offset曲线的Bezier逼近算法[J].数学研究,2005,38(2):196-199. 被引量:3
  • 4严兰兰,宋来忠.正则Bezier曲线的等距线及其计算机实现[J].计算机与数字工程,2006,34(8):129-131. 被引量:5
  • 5Farouki R T. Connic approximation of conic offsets [J]. Journal of Symbolic Computation, 1997, 23(2): 301-313.
  • 6In-Kwon Lee, Myung-Soo Kim, Gershon Elber. Planar curve offset based on circle approximation [J]. Computer-Aided Design, 1996, 28(8): 617-630.
  • 7Young Joon Ahn, Yeon soo Kim, Youngsuk Shin. Approximation of circular arcs and offset curves by Bezier curves of high degree [J]. Journal of Computational and Applied Mathematics, 2004,167(2): 405-416.
  • 8Samuel R Buss. 3D computer graphics-a mathematical introduction with OpenGL [M]. New York: United States of America by Cambridge University Press, 2003.171-173.
  • 9Byung-Gook Lee, Yunbeom Prak, Jaechil Yoo. Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction [J]. Computer Aided Geometric Design, 2002, 19(10): 709-718.
  • 10Liu Ligang, Wang Guojin. Explicit matrix representation for NURBS curve and surface [J]. Computer Aided Geometric Design, 2002, 19(6): 409-419.

二级参考文献17

  • 1王兴波.正则B—条等距曲线的计算[J].工程图学丛刊,1994(1):48-51. 被引量:1
  • 2方逵,赵军.正则有理Bezier曲线的等距曲线算法[J].国防科技大学学报,1996,18(1):110-113. 被引量:3
  • 3Klass R. An offset spline approximation for plane cubic spline[J]. Computer-Aided Design, 1983, 15(4): 297-299.
  • 4Tiller W, Hanson E G. Offsets of two dimensional profiles [J].IEEE Computer Graphics & Applications, 1984, 4(9) : 36-46.
  • 5Coquillart S. Computinging offsets of B-spline curves [J].Computer-Aided Design, 1988, 19(6) : 305-309.
  • 6Hoschek J, Wissel N. Optimal approximation conversion of spline curve and spline approximation of offset curves [J].Computer Aided Design, 1988, 20(8) : 475-483.
  • 7Hoschek J. Spline approximation of offset [J]. Computer Aided Geometric Design, 1988, 5:33-40.
  • 8Li Y M. Curve offsetting base on Legendre series [J].Computer Aided Geometric Design, 1998, 15:711-720.
  • 9Farouki R T. The conformal map Z→Z^2 of the hodograph plane[J]. Computer Aided Geometric Design, 1994, 11:363-390.
  • 10Lu Wei. Offset-rational parametric plane curves [J]. Computer Aided Geometric Design, 1995, 12:601-616.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部