期刊文献+

贝叶斯网络推理的一种高精度仿真算法 被引量:1

High Precision Simulation Algorithm for Bayesian Network Inference
下载PDF
导出
摘要 简要分析了贝叶斯网络推理算法的现状,提出了基于马氏链随机拟蒙特卡罗算法(MCRQMC)的推理方法。在给出高精度推理结果的同时,该推理算法亦能给出推理结果的标准偏差。从理论上对MCRQMC算法与现有的算法进行了比较分析,并采用随机Halton序列、Sobol序列和普通随机序列进行了推理实验。结果表明MCRQMC算法在同样样本数量的情况下,推理精度显著优于现有算法。 The current research status of inference methods for Bayesian Networks was reviewed, and a new inference algorithm based on Markov Chain Randomized Quasi-Monte Carlo (MCRQMC) was proposed. The new algorithm could provide high precision inference result and corresponding standard error at the same time. Comparative analysis of MCRQMC and currently used algorithms was conducted theoretically and experimentally. The experiments on the randomized halton sequence, sobol sequence and ordinary randomized sequence demonstrate that MCRQMC outperforms the conventional algorithms in terms of inference precision.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第1期108-111,116,共5页 Journal of System Simulation
基金 总装预研基金项目(513270201)
关键词 贝叶斯网络 马氏链 随机拟蒙特卡罗法 低偏差序列 Bayesian networks Markov chain randomized quasi-Monte Carlo low-discrepancy sequence
  • 相关文献

参考文献9

  • 1李波,高晓光.基于贝叶斯网络的机载武器系统综合决策[J].系统仿真学报,2007,19(4):886-889. 被引量:19
  • 2郭小宾,王壮,胡卫东.基于贝叶斯网络的目标融合识别方法研究[J].系统仿真学报,2005,17(11):2713-2716. 被引量:18
  • 3薛方正,方帅,徐心和.多机器人对抗系统仿真中的对手建模[J].系统仿真学报,2005,17(9):2138-2141. 被引量:7
  • 4Andrieu C, de Freitas N, Doucet A, et al. An Introduction to MCMC for Machine Learning [J]. Machine Learning (S1573-0565), 2003, 50: 5-43.
  • 5Hongmei Chi. Scrambled Quasirandom Sequances and Their Applications [D]. USA: The Florida State University, 2004.
  • 6Hickemell F J. The Mean Square Discrepancy of Randomized Nets [J]. ACM Trans Modeling and Computer Simulation (S1049-3301), 1996, 6: 274-296.
  • 7Owen A B. Randomly Permuted (t,m, s)-Nets and (t, s)-Sequences in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing [C]// Lecture Notes in Statistics. Germany: Springer- Verlag, 1995, 106: 299-317.
  • 8Christiane L. Randomized Quasi-Monte Carlo: A Tool for Improving the Efficiency of Simulations in Finance [C]// Proceedings of the 2004 Winter Simulation Conference, Washington, D.C., USA, 2004. Piscataway NJ, USA: IEEE, 2004, 2: 1565-1573.
  • 9Kolkiewicz A W. Applications of Scrambled Low Discrepancy Sequences to Exotic Options [C]// Proceedings of 9th International AFIR Colloquium, Tokyo, 1999. Tokyo, Japan: Kluwer Academic, 1999, 2: 885-918.

二级参考文献22

  • 1潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615. 被引量:183
  • 2薛方正,冯挺,徐心和.足球机器人系统仿真中的碰撞研究[J].机器人,2005,27(1):78-81. 被引量:2
  • 3余舟毅,陈宗基,周锐.基于贝叶斯网络的威胁等级评估算法研究[J].系统仿真学报,2005,17(3):555-558. 被引量:31
  • 4孙兆林,杨宏文,胡卫东.基于贝叶斯网络的态势估计方法[J].计算机应用,2005,25(4):745-747. 被引量:23
  • 5Heekman D, Geiger D, Chiekering D. Learning Bayesian networks:the combination of knowledge and statistical data[J]. Machine Learning, 1995, 20(3):197-243.
  • 6Heekman D, Shaehter R. Decision-Theoretic foundations for causal reasoning[J]. Journal of Artificial Intelligence Research, 1995, 3:405-430.
  • 7Xue Fangzheng, Fang Shuai, Xu Xinhe. Artificial Ecological Pyramid Model and Its Application in Autonomous Robot Strategy System [C].Proceedings of IEEE Conference on Robotics and Biomimetics(Robio). Shenyang, China. 2004, 8: 845-849.
  • 8Michael J. Larkin. Sensor Fusion and Classification of Acoustic Signals Using Bayesian Networks[J]. 0-7803-5148-7/98 1998 IEEE,1359-1362.
  • 9Alfonso Lazaro, J R Armada. Multisensofial Fusion for Optimal Object Recognition[J]. 2000, IEEE Ultrasonic Symposium, 797-800.
  • 10Peilin Lan, Qiang Ji, Carl G Looney. Information Fusion with Bayesian Networks for Monitoring Human Fatigue[J]. ISIF 2002,535-542.

共引文献40

同被引文献9

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部