期刊文献+

高斯过程回归中的logdet近似算法及数值实验 被引量:1

Approximate Implementation of Logarithm of Matrix Determinant in Gaussian Process Regression and Numerical Experiments
下载PDF
导出
摘要 在高斯过程以及其他空间回归模型中,超参数的最大似然估计(MLE)通常需要求矩阵行列式对数的估计,简称logdet。提出了一种基于幂级数展开的结构,用于广义正定矩阵logdet的近似计算,并给出三种新的补偿方案,进一步提高近似值的精确度和计算效率,所提logdet的近似实现方案仅需50N2次操作。大量的数值实验,包括对随机产生的正定矩阵、随机产生的协方差矩阵以及两个高斯过程回归实例产生的协方差矩阵序列的检验,都已证实所提方案的可行性。 Maximum likelihood estimation (MLE) of hyperparameters in Gaussian processes as well as other spatial regression models usually requires the evaluation of the logarithm of the matrix determinant, in short, log det. A power-series expansion based framework was proposed for approximating the log det of general positive-definite matrices. Three novel compensation schemes were given to further improve the approximation accuracy and computational efficiency. The proposed log det approximation required only 50( N 2) operations. The proposed scheme was substantiated by a large number of numerical experiments, including tests on randomly-generated positive-definite matrices, randomly-generated covariance matrices and sequences of covariance matrices generated online in two Gaussian process regression examples.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第1期174-179,共6页 Journal of System Simulation
基金 国家自然科学基金(60643004) 广州市科技攻关计划(2060402)
关键词 高斯过程 矩阵行列式的对数 幂级数展开 补偿 数值实验 Gaussian process logarithm of matrix determinant power-series expansion compensation numerical experiment
  • 相关文献

参考文献2

二级参考文献17

  • 1概率论.复旦大学[M].北京:人民教育出版社,1979..
  • 2Karl Heinz Borgwardt. The Simplex Method: A Probabilistic Analysis. New York: Springer-Verlag, 1980.
  • 3Daniel A. Spielman, Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. In: Proc. of the the 33rd Annual ACM Symp. on Theory of Computing. Hersonissos: ACM Press, 2001.
  • 4Daniel A. Spielman, Shang-Hua Teng. Smoothed analysis of algorithms. In: Proc. of the Int'l Congress of Mathematicians in 2002. Beijing: High Education Press, 2002. 1~3.
  • 5Cyril Banderier, Kurt Mehlhorn, Rene Beier. Smoothed analysis of three combinatorial problems. In: Proc. of the 28th Int'l Symp. on Mathematical Foundations of Computer Science.Prague: Springer-Verlag, 2003.
  • 6Avrim Blum, John Dunagan. Smoothed analysis of the perceptron algorithm for linear programming. In: Proc. of the 13th Annual ACM-SIAM Symp. on Discrete Algorithms. San Francisco:SIAM, 2002. 905~914.
  • 7Arvind Sankar, Daniel A. Spielman, Shang-Hua Teng. Smoothed analysis of the condition numbers and growth factors of matrices.In: Proc. of the 2002 Conf. on the Foundations of Computational Mathematics. Minnesota: Cambridge University Press, 2003.
  • 8Luca Becchetti, Stefano Leonardi, et al. Average case and smoothed competitive analysis of the multi-level feedback algorithm. In: Proc. of the 44th Annual IEEE Symp. on Foundations of Computer Science. Cambridge: IEEE Computer Society Press, 2003.
  • 9G. Nutt. Operating System Projects Using Windows NT.Boston: Addison Wesley, 1999.
  • 10A.S. Tanenbaum. Modern Operating Systems. New Jersey:Prentice-Hall Inc., 1992.

共引文献4

同被引文献4

  • 1G Gerardi,L Abbene,A La Manna. Digtal Filtering and Analysis for a Semiconductor X-Ray Detector Data Acquisition[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators Spectrometers Detectors and Associated Equipment (S0168-9002),2007,(1-2):378-380.
  • 2T Noulis,C Deradonis,S Siskos. Particle Detector Tunable Monolithic Semi-Gaussian Shaping Filter Based on Trans-Conductance Amplifiers[J].Nuclear Instuments and Methods in Physics Research Section A:Accelerators Spectrometers Detectors and Associated Equipment (S0168-9002),2008,(02):330-337.
  • 3龚沛曾;陆慰民;杨志强.Visual Basic程序设计简明教程[M]北京:高等教育出版社,2003.
  • 4丁强,谢红梅,何贵青.基于MPI的并行分布式高斯消元算法设计和评估[J].系统仿真学报,2009,21(20):6429-6431. 被引量:4

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部