期刊文献+

无线传感器网络中滑动窗口轮廓查询算法 被引量:1

A Sliding Window Skyline Query Algorithm in Wireless Sensor Networks
下载PDF
导出
摘要 提出了一种基于过滤的算法(filter based algorithm,FBA)来连续地维护传感器网络中的滑动窗口轮廓查询。首先,研究了利用元组过滤器和格过滤器来减少网络中数据传输量的两种方法。由于它们各有利弊,提出了根据数据分布来选择合适的过滤器的自适应过滤法;另外,提出了一系列的优化方法来进一步提高算法的能量有效性。仿真和真实数据的实验结果表明,FBA及其优化方法能有效地减少连续维护传感器网络中滑动窗口轮廓时的通信代价,进而节约传感器网络的能量。 A filter based algorithm (FBA) which continuously maintains sliding window skylines over a wireless sensor network is proposed. Specifically, two approaches using tuple and grid respectively to reduce the amount of data transferred among sensor nodes are first investigated. Since both of them have their own pros and cons, adaptive filtering which chooses the “right” filter according to data distribution is proposed. In addition to FBA, a series of optimization techniques are also discussed to improve the energy efficiency of FBA. Both the synthetic simulation and real data experimental results show that FBA together with the optimization techniques can effectively reduce the communication cost and save the energy on continuously maintaining the sliding window skylines over wireless sensor networks.
出处 《计算机科学与探索》 CSCD 2009年第1期37-50,共14页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 国家高技术研究发展计划(863) 高等学校科技创新工程重大项目培育资金项目(No.706016)~~
关键词 无线传感器网络 轮廓查询 能量有效性 过滤 优化 wireless sensor network skyline query energy efficiency filtering optimization
  • 相关文献

参考文献2

二级参考文献73

  • 1ALERT. http://www.altersystem.org.
  • 2Bonnet P, Gehrke J, Seshadri P. Querying the physical world. IEEE Personal Communication, 2000,7(5):10-15.
  • 3Noury N, Herve T, Rialle V, Virone G, Mercier E. Monitoring behavior in home using a smart fall sensor. In: Proceedings of the IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Lyon: IEEE Computer Society, 2000.607~610.
  • 4Sensor Webs. http://sensorwebs.jpl.nasa.gov/.
  • 5Shill E, Cho S, Ickes N, Min R, Sinha A, Wang A, Chandrakasan A. Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In: Proceedings of the ACM MobiCom 2001. Rome: ACM Press, 2001. 272-286.
  • 6Akyildiz I.F, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor network: A survey. Computer Networks, 2002,38(4):393~422.
  • 7Asada G, Dong M, Lin TS, Newberg F, Pottle .G, Kaiser WJ, Marcy HO. Wireless integrated network sensors (WINS) for tactical information systems. In: Proceedings of the 1998 European Solid State Circuits Conference. New York: ACM Press, 1998. 15-20.
  • 8Sohrabi K, Pottie GJ. Performance of a novel self-organization protocol for wireless Ad hoc sensor networks. In: Proceedings of the IEEE 50th Vehicular Technology Conference. Amsterdam, 1999. 1222~1226.
  • 9Sinhua A, Chandrakasan A. Dynamic power management in wireless sensor network. IEEE Design and Test of Computer, 2001,18(2):62~74.
  • 10Lm C, Kim H, Ha S. Dynamic voltage scheduling technique for low-power multimedia application using buffers. In: Proceedings of the International Symposium on Low Power Electronics and Design. California: ACM Portal Press, 2001. 34~39.http://eeserver.korea.ac.kr/-bk21/arch/bk21 conf/26.pdf.

共引文献2161

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部