期刊文献+

GPS非线性估计中无导数卡尔曼滤波研究

Study of Derivative-Free Kalman Filting on nonlinear estimation for GPS
下载PDF
导出
摘要 在GPS领域应用的非线性估计方法中,扩展Kalman滤波(EKF)存在稳定性差、计算量大等缺陷。基于非线性变换思想的UKF(Unscented Kalman Filtering)中状态方差阵易失去半正定性。本文引入了一种无导数卡尔曼滤波-基于重复确定性采样的平方根UKF(Square Root-Unscented Kalman Filter,SR-UKF)估计方法,并对其状态方差阵及随机噪声方差阵Cholesky分解更新公式做了改进,避免了导数的运算,有效地确保方差阵及其平方根的正定性从而抑止了发散。将这种无导数卡尔曼滤波应用于GPS/DR组合导航系统的状态估计上,仿真结果表明本文所改进的方法在滤波的精度和鲁棒性上均优于EKF和UKF。 The Extended Kalman Filter (EKF) as estimation algorithm for nonlinear systems on Global Positioning System(GPS), providing an insufficiently stable representation in many cases , and it is difficult to operate .The Unscented Kalman Filtering(UKF) as a method based on nonlinear transformation is introduced. But the state covariance matrix of UKF can easily loses its positive semi- definiteness. A kind of derivative-fred Kalman tilting-Square Root-Unscented Kalman filter based on repeatedly definite sampling is proposed in this paper. Especially, formulas of state and random noise covariance matrix's Cholesky decomposition update are improved. The improvement avoids derivative calculation, guarantees positive definiteness Of covariance matrix and its square root so as to inhibit divergence. The improved SR-UKF method is applied to state estimation for GPS/DR integrated navigation system. Simulation results show that the improved SR-UKF method can obtain higher accuracy and better robustness than EKF, UKF.
出处 《微计算机信息》 2009年第1期223-225,共3页 Control & Automation
关键词 非线性估计 无导数卡尔曼滤波 Cholesky分解更新 GPS/DR组合导航 nonlinear estimation derivative-free kalman tilting Cholesky decomposition update GPS/DR Integrated navigation
  • 相关文献

参考文献7

  • 1赵超凡,付梦印,张继伟.低成本组合导航系统滤波算法的研究[J].微计算机信息,2007,23(02S):215-216. 被引量:6
  • 2Nrgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear syste ms[J]. Automatica, 2000, 36: 1627-1638.
  • 3柴霖,袁建平,罗建军,方群,岳晓奎.非线性估计理论的最新进展[J].宇航学报,2005,26(3):380-384. 被引量:35
  • 4N.Tudoroiu, K.Khorasani.State Estimation of the Vinyl Acetate Reactor Using Unscented Kalman Filters (UKF) [J].Industrial Electronics and Control Applications,2005.
  • 5Van Der Merwe,R,Wan,E.A. The square-root unscented Kalman filter for state and parameter- estimtion[J]. Acoustics, Speech and Signal Processing-Proceedings, 2001,6:3461-3464.
  • 6Li, X.R., and Jilkov, V.P. Survey of maneuvering target tracking: Part I dynamic models [C]. IEEE Transactions on aerospace and electronic systems, 2003, 39(4): 1333-1364.
  • 7Shunlan Liu. Single Observer Passive Location using Phase Rate of Change with the Modi- fled UKF [J].Communicat'ions, Circuits and Systems Proceedings,2006,Vol. 1:311-314.

二级参考文献18

  • 1蔡皓昌,余成融,潘志浩.消防机器人GPS导航系统的精度提高方案[J].微计算机信息,2004,20(10):128-129. 被引量:2
  • 2张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法[J].航空学报,2004,25(6):598-601. 被引量:23
  • 3张友民,戴冠中,张洪才.卡尔曼滤波计算方法研究进展[J].控制理论与应用,1995,12(5):529-538. 被引量:45
  • 4Farina A, Ristic B, Benvenuti D. Tracking a ballistic target:comparison of several nonlinear filters[ J]. IEEE Trans on Aerospace and Electronic Systems, 2002, 38(3): 854 - 867.
  • 5Chai L, Yuan J P, Fang Q, et al. Neural network aided adaptive kalman filter for multi-sensors integrated navigation [ J ]. Lecture Notes in Computer Science, Springer-Verlag, 2004, 3174:381 -386.
  • 6Nφrgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear system [ J ]. Automatica, 2000, 36 ( 11 ):1627 - 1638.
  • 7Schei T S. A finite difference method for linearization in nonlinear eatimation algorithms[J]. Automatica, 1997, 33(11): 2051 - 2058.
  • 8Wan E A, Van der Merwe R. The unscented kalman filter for nonlinear estimation [ A ]. In: Proc of the Symposium 2000 on Adaptive System for Signal Processing, Communication and Control(AS-SPCC)[C], Lake Louise, Alberta, Canada, October 2000,IEEE.
  • 9Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-gaussian bayesian state estimation[A]. In: Proc of the Radar and Signal Processing[C], 1993:107 - 113.
  • 10Van der Merwe R, Doucet A, Freitas N, Wan E A. The Unscented Particle Filter[R]. Technical Report CUED/F- INFENG/TR 380,Cambridge University, 2000..

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部