摘要
在多层频繁模式挖掘时,结合映射和并发技术,改进经典的FP-growth算法,提出了多层映射频繁模式增长算法(ML_MFP_Growth)。首先对事务数据库中的项目编码预处理,随后对编码数据库的每一列进行映射,构造各层映射频繁模式树(MFP-Tree),最后并发挖掘各层MFP-Tree,得到所有频繁模式。实验表明,ML_MFP_Growth算法比传统多层频繁模式挖掘算法性能有所提高。
With the combination of mapping and parallel techniques, the algorithm FP-growth is extended to the discovery of the multiple-level frequent patterns. And then a new algorithm is developed, which is called multiple-level mapping frequent patterns growth algorithm, namely ML_MFP_Growth. In the process of mining, firstly the transaction database is dealt with to get an encoded database; secondly each row of the encoded database is mapped to construct the MFP-Tree at all concept levels; finally each MFP- Tree is mined in parallel to generate all the frequent patterns. Finally a performance test is held, which shows that the ML_MFP_Growth algorithm has better performance than some traditional algorithms.
出处
《微计算机信息》
2009年第3期179-181,共3页
Control & Automation
基金
矿安全监测数据解析整合模型与应用研究(50674086)
基金颁发部门:国家自然科学基金委
申请人:孟凡荣
项目名称:煤矿井下人员安全管理与救援支持系统科技示范工程研究(BS2006002)
基金颁发部门:江苏省科技厅
申请人:孟凡荣
关键词
关联规则
频繁模式
映射
并发
多层
Association rules
frequent patterns
mapping
parallel
multiple concept levels