期刊文献+

一种新的多层频繁模式挖掘算法 被引量:1

A new algorithm for mining multiple-level frequent patterns
下载PDF
导出
摘要 在多层频繁模式挖掘时,结合映射和并发技术,改进经典的FP-growth算法,提出了多层映射频繁模式增长算法(ML_MFP_Growth)。首先对事务数据库中的项目编码预处理,随后对编码数据库的每一列进行映射,构造各层映射频繁模式树(MFP-Tree),最后并发挖掘各层MFP-Tree,得到所有频繁模式。实验表明,ML_MFP_Growth算法比传统多层频繁模式挖掘算法性能有所提高。 With the combination of mapping and parallel techniques, the algorithm FP-growth is extended to the discovery of the multiple-level frequent patterns. And then a new algorithm is developed, which is called multiple-level mapping frequent patterns growth algorithm, namely ML_MFP_Growth. In the process of mining, firstly the transaction database is dealt with to get an encoded database; secondly each row of the encoded database is mapped to construct the MFP-Tree at all concept levels; finally each MFP- Tree is mined in parallel to generate all the frequent patterns. Finally a performance test is held, which shows that the ML_MFP_Growth algorithm has better performance than some traditional algorithms.
出处 《微计算机信息》 2009年第3期179-181,共3页 Control & Automation
基金 矿安全监测数据解析整合模型与应用研究(50674086) 基金颁发部门:国家自然科学基金委 申请人:孟凡荣 项目名称:煤矿井下人员安全管理与救援支持系统科技示范工程研究(BS2006002) 基金颁发部门:江苏省科技厅 申请人:孟凡荣
关键词 关联规则 频繁模式 映射 并发 多层 Association rules frequent patterns mapping parallel multiple concept levels
  • 相关文献

参考文献4

二级参考文献18

  • 1龙银香.基于移动计算的数据挖掘研究[J].微计算机信息,2005,21(4):216-217. 被引量:12
  • 2Hah J, Pei J, Yin Y. Mining partial periodicity using frequent pattern trees: [CS Tech. Rep. 99-10]. Simon Fraser University, July 1999
  • 3Savasere A,Omiecinski E,Navathe S. An efficient algorithm for mining association rules in large database. In VLDB'1995. 432~ 443
  • 4Srikant R,Vu Q,Agrawal R. Mining association rules with item constraints. In KDD'1997. 594~605
  • 5Han Jiawei,Pei Jian, Yin Yiwen. Mining Frequent Patterns without Candidate Generation. http://www. cs. sfu. ca/~peijian/personal/publications
  • 6Agrawal R, Srikant S. Fast algorithms for mining association rules. In VLDB'1994. 487~499
  • 7Bayardo R J. Efficiently mining long patterns from databases. In SIGMOD'1998. 85~93
  • 8Agrawal R, Srikant B. Fast algorithms for mining association rules. In VLDB'1994. 487~499
  • 9Grahne G, Lakshmanan L, Wang X. Efficient mining of constrained correlated sets. In ICDE'2000
  • 10Klemettinen M,et al. Finding interesting rules from large sets of discovered association rules. In CIKM'1994. 401~408

共引文献29

同被引文献5

  • 1杜阿宁,程晓明.网络流量分析中的频繁项监测技术研究[J].通信学报,2006,27(2):9-15. 被引量:3
  • 2B. Babcock, M. Datar, R. Motwani, L. Callaghan. Maintaining Variance and k-Medians over Data Stream Windows. ACM PODS, 2003:5-14.
  • 3Mark Levene, George Loizou. Zipf's Law for Web Suffers. Knowledge and Information Systems 2001 (3):120-129.
  • 4G. S. Manku, R. Motwani. Approximate Frequency Counts Over Data Streams. Proceedings of the 28th International Conference on VLDB, Hong Kong, China, 2002.8 : 346 -357.
  • 5M. Sahami, T. Heilman. A web-based kernel function for measuring the similarity of short text snippets. In Proceedings of World Wide Web 2006, 377-386.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部