期刊文献+

多属性约束事件序列的关联规则挖掘方法 被引量:4

Mining multi-attribute event Sequential Pattern based on association rule
下载PDF
导出
摘要 传统序列模式挖掘算法往往忽略了序列模式本身的时间特性,所考查的序列项都是单一事件,无属性约束。提出了一种挖掘多属性约束事件序列关联规则的方法。此方法基于传统的Apriori和AprioriAll算法,考虑了应用环境下事件序列模式中事件之间的过渡时间,采用分层式挖掘思想,先挖掘频繁序列模式,然后从频繁事件序列中挖掘多属性约束项的关联规则。实例分析为挖掘带时间限多属性约束的序列模式提供了实施思路。 The time trait is often ignored in the course of mining traditional sequential pattern, in which the sequential item is also without attribute constraint. An idea is given to mine event sequential pattern with muhi-attribute constraint in this paper. Based on the algorithm of Apriori and Apriori, the transition time is taken into account between events. According to the layer idea, the key task is to mine the frequent sequential pattern first, then to find out the association rules in the attribute constraint item. In the end it provides a way to mine sequential pattern with multi-attribute constraint by example analysis.
出处 《微计算机信息》 2009年第3期187-188,166,共3页 Control & Automation
基金 西南交通大学峨眉校区科技发展基金
关键词 序列模式 属性约束 关联规则 sequential pattern attribute constraint association rule
  • 相关文献

参考文献4

  • 1PEI J, HAN J, MORTAZAV I2ASL B, et al. PrefixSpan: Mining Sequential Patterns by Prefix - Projected Growth [A]. Proceedings of 17th IEEE International Conf on Data Engineering [C]. Heidelberg, Germany, 2001. 215 - 224.
  • 2Pei Jian, Han Jia-wei. Mining sequential patterns by pattergrowth: the PrefixSpan approach [J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(11): 1424- 1440.
  • 3朱立运,朱建秋.带时间特征的序列模式挖掘算法TESP[J].计算机工程,2004,30(10):51-53. 被引量:3
  • 4汤茂斌,陈业智,李就好.数据挖掘技术在辅助决策系统中的应用[J].微计算机信息,2008,24(21):105-106. 被引量:3

二级参考文献11

  • 1[1]Agrawal R, Srikant R.Mining Sequential Patterns.In ICDE, 1995-03
  • 2[2]Srikant R, Agrawal R. Mining Sequential Patterns:Generalizations and Perfo fmnance Improvements. In EDBT, 1996-03
  • 3[3]Han J,Pei J.Yin Y.Mining Frequent Patterns Without Candidate Generation. ACM-SIGMOD,Dallas, TX,2000-05
  • 4[4]Pei J, Hah J, Mortazavi-Asl B,et al. PrefixSpan:Mining Sequential Patterns Efficiently by Prefix-projected Pattern Growth. Heidelberg,Germany: ICDE'01,2001-04
  • 5[5]Garofalakis M, Rastogi R, Shim K. Spirit: Sequential Pattern Mining with Regular Expression Constraints. Edinburgh,U K:VLDB199,1999-09
  • 6[6]Pei J,Han J.Can We Push More Constraints into Frequent Pattern Mining? Boston, MA:KDD'2000, 2000-08
  • 7[7]Han J,Pei J.Pattern Growth Methods for Sequential Pattern Mining: Principles and Extensions. San Francisco, California, USA:ACM SIGKDD 2001,2001-08
  • 8贾俊平 何晓群 金勇进.统计学[M].北京:中国人民大学出版社,2000.156-205.
  • 9http://www.dmgroup.org.cn/
  • 10江伟,梁家荣,蒋建兵.Vague聚类分析在模式识别中的应用[J].微计算机信息,2007(31):209-210. 被引量:8

共引文献4

同被引文献22

  • 1Bace R G. Intrusion Detection [M].US:Macmillan Technical Publishing,1999.
  • 2Rakesh Agrawal, Ramakrishnan Srikant.Mining Sequential Patterns [C]. The llth International Conference on Data Engineering. Los Alamitos,CA:IEEE Computer Society Press. 1955.
  • 3Tamakrishnan Srikant, Rakesh Agrawal. Mining Sequential Patterns: Generalizations and Performance Improvements [C]. The 5th International Conference on Extending Database Technology, Berlin: Springer-Verlag. 1996.
  • 4Pei Jian,Han Jiawei,Mining Sequential Parterres by Patterns by Patter-growth: The PrefixSpan Approach [J]. IEEE Transactions on Knowledge and Data Engineering,2004 6(10):1-17.
  • 5Chiu,D.Y.,Chen, A.L.P.:An Efficient Algorithm for Mining Frequent Sequences by a New Stategy withtout Support Counting [C].In:Proc.of IEEE International Conf.on Data Engineering, pp. 375-386,2004.
  • 6C Li, J Wang. Efficiently mining closed subsequences with gap constraints [C]. In: Proceedings of 2008 SIAM international conference on data mining, 2005.
  • 7Antunes,C. and Oliverira,A.L. Generalization of pattern-growth methods for sequential pattern mining with gap constraints [C]. In Proceedings of the 6th International Conference on Machine Learning and Data Mining (MLDM'03), pp.239-251, 2003.
  • 8Agrawal, R. and Srikant, R., "Mining Sequential Patterns," in Proc. of the 1 lth Int' l Conf. on Data Engineering. 1995,p3-14.
  • 9J.T. Lee , Huei-Wen Wu, Tzu-Yu Lee et al,. Mining closed patterns in multi-sequence time-series databases [J]. Data & Knowledge Engineering, 2009 68:p1071-1090.
  • 10Gong Chen, Xindong Wu, Xingquan Zhu. Mining Sequential Patterns across Time Sequences [J]. New Generation Computing, 2008, 26:p75-96.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部