期刊文献+

基于免疫计算的概念提取方法研究 被引量:2

Studies on the Method of Concept Extraction Based on the Immune Computation
下载PDF
导出
摘要 基于实例的模式识别中,由于存在大量实例和特征个数可变特性,导致分类器识别性能低下,难于形成具有高度概括性的共性对象实例。基于免疫计算的概念提取是在有效降低特征个数的同时,提取各类的中心,以此为实例模式对待识别样本进行分类决策。实验结果表明算法在保持甚至提高分类精度的同时,不仅有效地降低了特征个数,而且提取的类中心分类效果更好。与基于遗传算法的概念提取结果相比较,在有限代数内,该算法能收敛到更优的类中心,从而验证了算法的有效性及其应用潜力。 In the pattern recognition based on examples, the large low recognition performance of the classifier and make it difficult amounts of examples and the variation of the features cause the to draw the succinct generalization of the general examples instance. The concept extraction based on the immune computation is to lower effectively the amount of marks and to extract the center of every class which is used in the classifying of the samples to be classified. The result of the experiment indicates that the algorithm can keep up and even enhance the precision of classification, lower effectively the amount of features and supply a good effect of classifying based on the center of classes. Compared with the result of concept extraction based on the genetic algorithm, this one can converge more effectively to the center of classes in the finite algebra, thus verify the effectiveness and potential application of this algorithm.
出处 《微计算机信息》 2009年第3期251-252,230,共3页 Control & Automation
关键词 免疫计算 概念提取 特征选择 模式分类 immune computation concept extraction feature selection pattern classification
  • 相关文献

参考文献4

二级参考文献94

  • 1戴汝为,王珏.关于智能系统的综合集成[J].科学通报,1993,38(14):1249-1256. 被引量:52
  • 2戴汝为,王珏.巨型智能系统的探讨[J].自动化学报,1993,19(6):645-655. 被引量:39
  • 3钱忠良,王文军.不变矩目标特征描述误差分析和基于上层建筑不变矩的舰船识别[J].电子测量与仪器学报,1994,8(3):23-31. 被引量:4
  • 4陆德源.现代免疫学[M].上海:上海科学技术出版社,1998.14-16.
  • 5学科交叉和技术应用专门小组(美).学科交叉和技术应用[R].北京:科学出版社,1994.43.
  • 6[1]Kira,k.and A.Rendell.A Practical approach to feature selection.Machine Learning:Proceedings of International Conference(ICML92).:249-256.
  • 7[2]Jennifer G.pY.and Carla E.Brodley.Feature Selection for unsupervised learning.Journal of Machine learning Research[J].2004.05:845-889.
  • 8[4]Robnik Sikonjia.Speeding up Relief algorithm with k-d tree.Proceedings of Electrotehnical and Computer Science Conference(ERK98).:137-140.
  • 9M N O Sadiku. Artificial Intelligence [ J ]. IEEE Potentials, 1989, 8(2) :35 - 39.
  • 10R J Patton, C J Lopez-Toribio, F J Uppal. Artificial intelligence approaches to fault diagnosis[ A]. IEE Colloquium on Condition Monitoring :Machinety, External Structures and Health (Ref. No. 1999/034)[ C]. London:The Institute of Electrical Eagineers, 1999.5/1 - 5/18.

共引文献326

同被引文献14

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部