期刊文献+

圈长和顶点数给定的单圈图的Laplace谱半径排序 被引量:1

Ordering of Unicyclic Graphs with Cycle Length g and Vertices n
下载PDF
导出
摘要 只含一个圈的简单连通图称为单圈图.郭继明给出了固定圈长的单圈图的Laplace谱半径并刻画了相应的极图.该文在此基础上确定了圈长为g的所有n=g+k(g≥5,k≥3)阶单圈图的Laplace谱半径从大到小的前[g/2]个图. A unicyclic graph is either a cycle or a cycle with trees attached. GUO Jiming gave the first largest Laplacian spectral radius among all unicyclic graphs with cycle length g and n vertices. In this paper, the first largest [g/2]graphs is determined according to Laplacian spectral radii among all unicyclic graphs with cycle length g and n=g+k(g≥5,k≥3) vertices.
作者 刘颖 刘月
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期129-133,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(10871166)
关键词 单圈图 LAPLACE矩阵 LAPLACE谱半径 特征多项式 unicyclic graph Laplace matrix Laplacian spectral radius characteristic polynomial
  • 相关文献

参考文献11

  • 1LI Jiongsheng, ZHANG Xiaodong. A new upper bound for eigenvalues of Laplacian matrix of a graph [J]. Linear Algebra and Its Applications, 1997,265: 93.
  • 2LI Jiongsheng, ZHANG Xiaodong. On the Laplacian eigenvalues of a graph[J]. Linear Algebra and Its Applications, 1998,285,305.
  • 3Merris R. Laplacian matrices of graphs: A survey [J]. Linear Algebra and Its Applications, 1994(197/198):. 143.
  • 4Merris R. A note on Laplacian graph eigenvalues [J]. Linear Algebra and Its Applications, 1998,285 : 33.
  • 5Dragos checks, Cvetkovic, Peter, Rowlinson. Spectra of unicyclic graphs [J]. Graphs and Combinatorics, 1987,3: 7.
  • 6张晓东,李炯生.树的Laplace矩阵的最大和次大特征值[J].中国科学技术大学学报,1998,28(5):513-518. 被引量:22
  • 7GUO Jiming. The Laplacian spectral radius of a graph under perturbation [J]. Computers and Mathematics with Applications, 2007,54 ( 5 ) : 709.
  • 8Grone R, Merris R. The Laplacian spectrum of graph Ⅱ [J]. SIAM J Discrete Math, 1994,7:221.
  • 9Merris R, Grone R, Sunde V S. The Laplacian spectrum of graph[J]. SIAM J Matrix Anal Appl, 1990,11 (2) : 218.
  • 10GUO Jiming. On the second largest Laplacian eigenvatue of trees [J]. Linear Algebra and Its Applications, 2005 (404): 251.

二级参考文献1

  • 1李炯生,Linear Algebr Its Appl,1997年,265卷,93页

共引文献21

同被引文献12

  • 1Anderson W N Jr,Morley T D. Eigenvalues of the Laplacian of a graph[J].Linear and Multilinear Algebra,1985,(02):141-145.
  • 2Cvetkovic D,Doob M,Sachs H. Spectra of Graphs:Theory and Application[M].New York:Academic Press,Inc,1980.
  • 3Das K C. The Laplaeian spectrum of a graph[J].Computers and Mathematics with Applications,2004,(5-6):715-724.
  • 4LI Jiong-sheng,ZHANG Xiao-dong. A new upper bound for eigenvalues of the Laplacian matrix of a graph[J].Linear Algebra and Its Applications,1997,(1-3):93-100.
  • 5LI Jiong-sheng,ZHANG Xiao-dong. On the Laplacian eigenvalues of a graph[J].Linear Algebra and Its Applications,1998,(1-3):305-307.
  • 6Merris R. Laplacian matrices of graphs:A survey[J].Linear Algebra and Its Applications,1994.143-176.
  • 7Merris R. A note on Laplacian graph eigenvalues[J].Linear Algebra and Its Applications,1998,(1-3):33-35.
  • 8Cvetkovic D,Rowlinson P. Spectra of unicyclic graphs[J].Graphs and Combinatorics,1987,(01):7-23.
  • 9GUO Ji-ming. On the second largest Laplacian eigenvalues of trees[J].Linear Algebra and Its Applications,2005,(1-3):251-261.
  • 10Grone R,Merris R. The Laplacian spectrum of a graph[J].SIAM Journal on Discrete Mathematics,1994,(02):221-229.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部