摘要
本文得到考虑了色散项后的一维分子晶体模型的孤子激发的运动解.在忽略了色散项的近似下,此运动解回复于通常极化子解.计算了模型中运动的自陷态的晶格位移、电子的自陷阱和电流密度以及孤子激发的峰值、峰宽、有效质量和束缚能以及Bloch能带底部电子的能量.而且此文还指出了孤子激发与通常极化子解的差别.
A moving solution for soliton excitation of a one-dimensional molecular-crystal model with the dispersion term is found. Under the approximation neglecting the dispersion term,the moving solution tends to the usual polarom solution. The lattice displacement of the self-trapped state, the self-trapped well of the electron, the density of current carried by soliton excitation which are movement, and the width, the peak,the dffective mass and the bind energy of soliton excitation, and the energy of electrons in the bottom of the Bloch band are calculated also. Differences between the soliton exciation in the model and the usual polaron are pointed out.
出处
《华南师范大学学报(自然科学版)》
CAS
1998年第1期77-82,共6页
Journal of South China Normal University(Natural Science Edition)
基金
广东省自然科学基金