期刊文献+

基于变窗口神经网络集成的时间序列预测 被引量:2

Time Series Forecasting Based on Variable-window Neural Networks Ensemble
下载PDF
导出
摘要 提出一个变窗口神经网络集成预测模型。该模型利用自相关分析构造出差异度较大的个体神经网络,提高了预测系统的泛化能力,同时能够有效剔除异常序列,提高预测精度。采用真实世界的数据集对该模型进行仿真。实验结果表明,该预测模型具有较高的预测精度,能有效预测移动通信的话务量。 A variable-window neural network ensemble model is proposed, which takes use of the self-correlation analysis method to construct all the individual neural networks with different types. This model improves the generalization ability of forecasting system. It can also remove outlier series effectively and promote the accuracy of forecasting. The model is simulated by using real data sets. Experimental results show this forecasting model has higher accuracy of forecasting and can predict the traffic of mobile communication effectively.
作者 谭琦 杨沛
出处 《计算机工程》 CAS CSCD 北大核心 2009年第1期176-177,182,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60574078)
关键词 神经网络集成 时间序列 预测 异常检测 neural networks ensemble time series forecasting outlier detection
  • 相关文献

参考文献5

  • 1Ruey E Combining Artificial Neural Networks and Statistics for Stock-market Forecasting[C]//Proc. of ACM Conf. on Computer Science. Indianapolis, USA: [s. n.], 1993.
  • 2Cortez P, Rio M, Rocha M, et al. Internet Traffic Forecasting Using Neural Networks[C]//Proc. of Int'l Joint Conf. on Neural Networks. Vancouver, BC, Canada: [s. n.], 2006.
  • 3Leerst I. Stock Advisor: An Intelligent Agent-based Stock Prediction System Using Hybrid RBF Recurrent Network[J]. IEEE Trans. on Systems, Man, and Cybernetics, 2004, 34(3): 421-428.
  • 4Krogh A, Vedelsby J. Neural Network Ensembles, Cross Validation, and Active Learning[M]. Cambridge, MA, USA: MIT Press, 1995.
  • 5Kuncheva L I, Whitaker C J. Measures of Diversity in Classifier Ensemble[J]. Machine Learning, 2003, 51(2): 181-207.

同被引文献15

  • 1林果园,郭山清,黄皓,曹天杰.基于动态行为和特征模式的异常检测模型[J].计算机学报,2006,29(9):1553-1560. 被引量:25
  • 2MONTGOMERY D C,JENNINGS C L,KULAHCI M.INtRODuCtiON tO tiME SERiES ANALySiS AND fORECAStiNg[M].MONtgOMERy:JOhN WiLEy & SONS,2015:79-82.
  • 3HAWKINS D M.IDENtifiCAtiON Of OutLiERS[M].LONDON:ChApMAN AND HALL,1980:135-138.
  • 4TANG L A,CUI B,LI H,Et AL.EffECtivE vARiAtiONMANAgEMENt fOR pSEuDO pERiODiCAL StREAM [C]∥PROCEEDiNgS Of thE ACM SIGMOD INtERNAtiONALCONfERENCE ON MANAgEMENt Of DAtA,BEiJiNg,ChiNA,JuNE 12-14,2007.
  • 5CHEN X Y,CHEN Y L, HUANG S,Et AL.DEtECtiNg AN ABNORMAL SuBSEquENCE iN A DAtASEquENCE:U.S.PAtENt AppLiCAtiON 14/598,843[P].2015-1-16..
  • 6HE Z,XU X,DENG S.DiSCOvERiNg CLuStER-BASED LOCALOutLiERS[J].PAttERN RECOgNitiON LEttERS,2003,24(9):1641-1650.
  • 7HORVATIC D,STANLEY H E,PODOBNIK B.DEtRENDED CROSS-CORRELAtiON ANALySiS fOR NON-StAtiONARytiME SERiES with pERiODiC tRENDS[J].EPL (EuROphySiCSLEttERS),2011,94(1):18007.
  • 8KEOGH E,LIN J,FU A W,Et AL.FiNDiNg uNuSuALMEDiCAL tiME-SERiES SuBSEquENCES: ALgORithMS ANDAppLiCAtiONS[J].INfORMAtiON TEChNOLOgy iN BiOMEDiCiNE,IEEE TRANSACtiONS ON,2006,10(3):429-439.
  • 9杜洪波,张颖.基于LLM的时间序列异常子序列检测算法[J].沈阳工业大学学报,2009,31(3):328-332. 被引量:4
  • 10张力生,杨美洁,雷大江.时间序列重要点分割的异常子序列检测[J].计算机科学,2012,39(5):183-186. 被引量:9

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部