期刊文献+

基于蒙特卡罗仿真的LDPC解码器功耗分析方法 被引量:4

LDPC Decoder Power Analysis Method Based on Monte Carlo Simulation
下载PDF
导出
摘要 精确评估LDPC解码器在不同信噪比下的功耗需要在门级仿真大量的随机输入向量,以致耗费大量时间。通过对解码算法进行定点化的蒙特卡罗仿真可以方便地得到不同信噪比下的误码率和平均迭代次数。该文结合门级仿真与蒙特卡罗仿真,方便快速地得到LDPC解码器在不同信噪比下较为精确的功耗。通过对IEEE802.16e中一个LDPC码的实验,证明了该方法的可行性和有效性。 To get the accurate LDPC decoder power analysis, large numbers of random input vectors should be simulated on gate-level, which consumes a lot of time. However, bit error rate and average iteration number on various signal-to-noise ratios can be easily got by fixed point Monte Carlo simulation on the decoding algorithms. Accurate power analysis can be calculated conveniently and efficiently with gate level simulation and Monte Carlo simulation combined. It is approved to be practical and efficient by power analysis on an LDPC code in IEEE802.16e.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第1期216-217,220,共3页 Computer Engineering
关键词 LDPC解码器 功耗分析 蒙特卡罗仿真 LDPC decoder power analysis Monte Carlo simulation
  • 相关文献

参考文献5

  • 1Gallager R G. Low-density Parity-check Codes[J]. IRE Trans. on Information Theory, 1962, 8(1): 21-28.
  • 2Roy K, Prasad S. Low Power CMOS VLSI Circuit Design[M]. New York: Wiley Interscience Publication, 2000.
  • 3Radosavljevic P, Baynast A, Cavallaro J R. Optimized Message Passing Schedules for LDPC Decoding[C]//Proc. of the 39th Annual Asilomar Conference on Signals, Systems and Computers. Asilomar USA: [s. n.], 2005: 591-595.
  • 4Ziemer R E, Tranter W H...Principles of Communications: Systems, Modulation and Noise[M]. 5th ed. New York: Wiley Interscience Publication, 2002.
  • 5Wang Kai, Xu Zhiwei. Synopsys Prime Power Manual Release U-2003.06-QA[M]. New York: McGrawi-Hill Publishers, 2003.

同被引文献19

  • 1陈光宇,黄锡滋,唐小我.故障树模块化分析系统可靠性[J].电子科技大学学报,2006,35(6):989-992. 被引量:11
  • 2Amari S, Dill G, Howald E. A New Approach to Solve Dynamic Fault Trees[C]//Proc. of the International Conference on Reliability and Maintainability. Tampa, Florida, USA: [s. n.], 2003.
  • 3CCSDS. 131.1-0-1-2007 Low Density Parity Check Codes for Use in Near-earth and Deep Space Applications[S]. 2007.
  • 4Chen Jinghu, Dholakia A, Eleftheriou E, et al. Reduced-complexity Decoding of LDPC Codes[J]. IEEE Trans. on Communications, 2005, 53(8): 1288-1299.
  • 5Kwon J, Klinct D, Ha J, et al. Fast Decoding of Rate-compatible Punctured LDPC Codes[C]//Proc. of ISIT'07. Nice, France: [s. n.], 2007.
  • 6Mansour M M, Shanbhag N R. A 640-Mb/s 2 048-bit Programmable LDPC Decoder Ctiip[J]. IEEE Journal of Solid-state Circuits, 2006, 41 (3): 684-698.
  • 7Haring J,Vinck A J H.Coding and Signal Space Diversity for a Class of Fading and Impulsive Noise Channel[J].IEEE Trans.on Information Theory,2004,50(5):887-895.
  • 8Tran N H,Nguyen N H,Tho Le-Ngoc.Performance Analysis and Design Criteria of BICM-ID with Signal Space Diversity for Keyhole Nakagami-m Fading Channels[J].IEEE Trans.on Information Theory,2009,55(4):1592-1602.
  • 9Li Xiaodong,Chindapol A J,Ritcey A.Bit Interleaved Coded Modulation with Iterative Decoding[J].IEEE Communications Letters,1997,1(6):169-171.
  • 10Gallager R.Low-density Parity Check Codes[J].IRE Trans.on Information Theory,1962,8(1):21-28.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部