期刊文献+

基于Lattice Boltzmann方法对瓦斯压力分布规律的模拟研究 被引量:1

Simulative Study on Gas Pressure Distribution Based on Lattice Boltzmann Method
下载PDF
导出
摘要 基于格子玻尔兹曼方法(Lattice Boltzmann Method,LBM)建立了裂隙煤体内瓦斯压力分布的二维动力学模型,并对瓦斯压力在空间上的分布和时间上的演化规律进行了模拟研究。结果表明,瓦斯压力分布与煤壁暴露的时间和所处的空间位置有关:煤壁的暴露时间越长,煤壁处的瓦斯压力梯度越小,流场内瓦斯压力的变化范围越大;在空间上瓦斯压力呈二次曲线分布,这与已有的理论分析和实测的结果相吻合,表明LBM方法可为研究瓦斯在煤层中的运移规律提供新的计算方法。 A new dynamic model for the simulation of two-dimensional gas pressure in fissured coal was established based on Lattice Boltzmann method(LBM),and simulation study was made on the spatial distribution and time evolvement of gas pressure,the simulation results indicated that the gas pressure distribution is related to the exposure time and the position of coal wall;the longer the exposure time of coal wall,the smaller the gas pressure gradient at the coal wall and the larger the variation range of gas pressure in gas flow fluid.The spatial gas pressure was in a quadratic curve distribution.The simulation results are consistent with the theoretical analysis and experimental results.This showed that LBM is a new calculation method for studying gas migration regularity in coal seam.
出处 《矿业安全与环保》 北大核心 2009年第1期7-9,13,共4页 Mining Safety & Environmental Protection
基金 国家自然科学基金项目(50534080 50674063) 国家重点基础研究计划(973计划)项目(2005CB221502) 山东省自然科学基金项目(Y2004F11) 山东科技大学科学研究基金项目(2008AZZ088)
  • 相关文献

参考文献11

  • 1Ren T X, Edwards J S, David J. Simulation of methane drainage boreholes using computational fluid dynamics[J]. American Society of Mechanical Engineers Pressure Vessels and Piping Division, 1999, 397:319 - 326.
  • 2朱诗山,刘向阳.低透气性薄煤层瓦斯抽放方法[J].煤炭技术,2003,22(8):75-76. 被引量:5
  • 3李宗翔.综放工作面采空区瓦斯涌出规律的数值模拟研究[J].煤炭学报,2002,27(2):173-178. 被引量:84
  • 4Spaid MAA, Phelan FRJ. Lattice Boltzmann method for modeling micro - scale flow in fibrous porous media [ J]. Physical Fluids,1997, 9: 2468-2474.
  • 5陶果,岳文正,谢然红,朱益华.岩石物理的理论模拟和数值实验新方法[J].地球物理学进展,2005,20(1):4-11. 被引量:45
  • 6Shiyi Chen, Gary D Doolen. Lattice Boltzmann method for fluid flows[J]. Fluid Mech., 1998, 30: 329-364.
  • 7Guo Z- L, Shi B - C, Wang N - C. Lattice BGK model for incompressible Navier- Stokes equation [ J ]. Computation Phys, 2000, 165 : 288 - 306.
  • 8Succi S, Foti E, Higuera F. Three dimensional flows in complex geometries with the Lattice Boltzmann method[J]. Europe phys, 1989, lett. 10:433 - 438.
  • 9Y. H. Qian, D. d' Humieres, P. Lallemand. Lattice BGK models for Navier- Stokes equation[J]. Europe Phys, 1992, Lett: 479 - 484.
  • 10Zhaoli Guo. Lattice Boltzmann model for incompr- essible flows through porous media[J]. The American Physical Society,2002, 66(3) :36304 - 1 - 9.

二级参考文献29

  • 1李宁.电阻率-孔隙度、电阻率-含油(气)饱和度关系的一般形式及其最佳逼近函数类型的确定(Ⅰ)[J].地球物理学报,1989,32(5):580-592. 被引量:50
  • 2李宗翔.回采采空区非均质流场风流移动规律的数值模拟[J].岩石力学与工程学报,2001,(2):1578-1581.
  • 3Kuntz M, Mareschal J C, Lavallee P. Numerical estimation of electrical conductivity in saturated porous media with a 2-D lattice gas[J]. Geophysics, 2000, 65(3): 766-772.
  • 4Archie G E. The electrical resistivity log as an aid in determing some reservoir characteristic[J]. Trans Am Inst Mech Eng,146: 15-61.
  • 5Hardy J, Pomeau Y, de Pazzis O. Time evolution of a two-dimentional model system[J]. J Math Phy, 1973, 14: 1746-1759.
  • 6Frish U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-stokes equatlon[J]. Phys Rev Lett, 1986, 56:1505-1508.
  • 7Clavin P, Lallemand P, Pomeau Y, et al. Simulation of free boundaries in flow systems by lattice-gas models[J]. J Fluid Mech. , 1988, 188: 437-464.
  • 8Rothman D H, Keller J M. Immiscible cellular automaton fluids[J]. J Stat Phys, 1988, 52:1119-1127.
  • 9Somers J A, Rem P C. Analysis of surface tension in two-phase lattice gases[J]. Physica D, 1991, 47: 39-46.
  • 10Balasubramanian K, Hayot F, Saam W F. Darcy's law from lattice-gas hydrodynamics. Phys Rev A, 1987, 36: 2248-2253.

共引文献130

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部