期刊文献+

一种用于点模式匹配的改进型谱方法 被引量:2

Improved Spectral Method for Point Pattern Matching
下载PDF
导出
摘要 利用谱方法进行点模式匹配的主要问题是对点的位置噪声比较敏感。为了提高谱方法对噪声的鲁棒性,该文在表示矩阵的构建过程中采用高斯加权的近邻矩阵对要匹配的点模式进行描述,提出一种新的符号校正方法,利用点的属性信息对根据谱方法得到的匹配度量进行加权。仿真实验表明,在噪声情况下的点模式匹配应用中采用改进的谱方法可以获得较高的正确匹配率。 When the point pattern matching problem is resolved with spectral method, one of the challenges which limit the method is that it is very sensitive to the measurement noise of the points' position. This paper improves the robustness of the spectral method from three aspects. It adopts the proximity matrix which takes the Gaussian weighted Euclidean distances between any two points within the same point pattern as its elements. A new sign correction method is proposed. The matching metric derived from the spectral method is further weighted by the points' attribute information. Simulation experiments show that when the improved spectral method is applied to the point pattern matching problem on noisy conditions it can achieve a high correct matching ratio.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第2期10-12,17,共4页 Computer Engineering
基金 国家部委"十一五"基金资助项目
关键词 点模式匹配 谱方法 表示矩阵 符号校正 匹配度量 point pattern matching spectral method representation matrix sign correction matching metric
  • 相关文献

参考文献6

  • 1Wilson R C, Hancock E R. Pattern Vectors from Algebraic Graph Theory[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(7): 1112-1124.
  • 2Tang Jun, Liang Dong, Wang Nian, et al. A Laplacian Spectral Method for Stereo Correspondence[J]. Pattern Recognition Letters, 2007, 28(12): 1391-1399.
  • 3王年,范益政,韦穗,梁栋.基于图的Laplace谱的特征匹配[J].中国图象图形学报,2006,11(3):332-336. 被引量:32
  • 4Park S H, Lee K M, Lee S U. A Line Feature Matching Technique Based on an Eigenvector Approach[J]. Computer Vision and Image Understanding, 2000, 77(3): 263-283.
  • 5Caelli T, Kosinov S. An Eigenspace Projection Clustering Method for Inexact Graph Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(4): 515-519.
  • 6Zhu Ping, Wilson R C. Stability of the Eigenvalues of Graphs[C]// Proceedings of Conf. on Computer Analysis of Images and Pattern. [S. l.]: Springer, 2005:371-378.

二级参考文献14

  • 1Cvetkovié D,Doob M,Sachs H.Spectra of graphs:Theory and application[M].Berlin:Academic Press,1982.
  • 2Chung F R K.Spectral graph theory[M].Providance,Rhode Island USA:American Mathematical Society,1997.
  • 3Umeyama S.An eigen decomposition approach to weighted graph matching problems[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(5):695 ~ 703.
  • 4Scott G L,Longuet-Higgins H C.An algorithm for associating the features of two images[J].Proceedings of Royal Society of London,1991,B-244:21 ~26.
  • 5Shapiro L S,Brady J M.Feature-based correspondence-An eigenvector approach[J].Image Vision Comput,1992,10 (5):283 ~288.
  • 6Carcassoni Marco,Hancock Edwin R.Spectral correspondence for point pattern matching[J].Pattern Recognition,2003,36 (1):193 ~ 204.
  • 7Carcassoni Marco,Hancock Edwin R.Correspondence matching with modal clusters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1609 ~ 1615.
  • 8Myers Richard,Hancock Edwin R.Least-commitment graph matching with genetic algorithms[J].Pattern Recognition,2001,34(2):375 ~394,
  • 9Endika Bengoetxea,Pedro Larranagab,Isabelle Bloch,et al.Inexact graph matching by means of estimation of distribution algorithms[J].Pattern Recognition,2002,35 (12):2867 ~ 2880.
  • 10Sengupta K,Boyer K L.Modelbase partitioning using property matrix spectra[J].Computer Vision Image Understanding,1998,70 (2):177 ~ 196.

共引文献31

同被引文献18

  • 1Liu Zhaoxia, An Jubai.A Robust Point Matching Algorithm for Image Registration[C]//Proc.of the 3rd International Conference on Machine Vision.Hong Kong, China: [s.n.], 2010.
  • 2David G L.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 3Marius L, Martial H.A Spectral Technique for Correspon- dence Problems Using Pairwise Constraints[C]//Proc.of the 10th IEEE International Conference on Computer Vision.Beijing, China: [s.n.], 2005.
  • 4Tao Dacheng, Li Xuelong, Wu Xindong, et al.Geometric Mean for Subspace Selection[J].IEEE Transactions on Pattern Analysis Machine Intelligence, 2009, 31(2): 260-274.
  • 5Yuan Yuan, Pang Yanwei, Wang Kongqiao, et al.Efficient Image Matching Using Weighted Voting[J].Pattern Recognition Letters, 2012, 33(4): 471-475.
  • 6Yaron L, Thomas F.M?bius Voting for Surface Correspon- dence[J].ACM Transactions on Graphics, 2009, 28(3): 1-12.
  • 7Oscar K A, Tai Chiew-Lan, Daniel C, et al.Electors Voting for fast Automatic Shape Correspondence[J].Computer Graphics Forum, 2010, 29(2): 645-654.
  • 8Jiri M, Ondrej C, Martin U, et al.Robust Wide-baseline Stereo from Maximally Stable Extremal Regions[J].Image and Vision Computing, 2004, 22(10): 761-767.
  • 9Minsu C, Lee Jungmin, Kyoung M L.Feature Correspon- dence and Deformable Object Matching via Agglomerative Correspondence Clustering[C]//Proc.of the 12th IEEE International Conference on Computer Vision.Kyoto, Japan: [s.n.], 2009.
  • 10LI Baihua, MENG Qingguang, HOLSTEIN H. Point Pattern Matching andApplications[J]. Aberystwyth U- niversity of Wales, 2009,87(4 ) 154-157.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部