摘要
为使微数据发布在满足K-匿名要求的同时提高匿名数据的精度,提出多维泛化路径的概念及相应的2种K-匿名算法,包括完整FilterK-匿名算法和部分FilterK-匿名算法。将它们与Incognito算法和Datafly算法进行比较,实验结果表明2种算法都能有效降低匿名信息损失,提高匿名数据精度和处理效率。
Microdata publication need satisfy the basic K-anonymity requirement as well as improve the precision of anonymized data. This paper proposes two related K-anonymity algorithms based on the notion of multi-dimensional generalization path, namely K-anonymity Filter algorithm and K-anonymity partial Filter algorithm. In comparison with classic Datafly algorithm and Incognito algorithm, the two algorithms offer more efficiency for both reducing anonymization cost and improving data precision.
出处
《计算机工程》
CAS
CSCD
北大核心
2009年第2期154-156,共3页
Computer Engineering
关键词
K-匿名
微数据
隐私保护
域泛化层次结构
K-anonymity
microdata
privacy protection
domain generalization hierarchy