摘要
设k为域,k的特征为零,φ为k的秩为1的非平凡,非阿基米德赋值,r为与其相对应的赋值环,P为r的极大理想.本文讨论了P在k的根扩张k(μ1m)(μ∈r,m为正整数)中的素理想P的分解律问题及其与P在k(ζm)(ζm为m次本原单位根)中的任意扩张P在k(μ1m。
Assume k is a field, and Its character is zero, Φ is a valuation of rank 1, non-trivial, non-ARCHIMEDEAN of k. r is the valuation ring of Φ. p is the maximal ideal of r. In this Paper, we have discussed the problem of prime ideal decomposition law in k(μ 1m ). Any p of the extension of p in k(ζ m) decomposes in k(μ 1m ,ζ m) and the relationship of them.
出处
《辽宁大学学报(自然科学版)》
CAS
1998年第2期97-100,共4页
Journal of Liaoning University:Natural Sciences Edition
关键词
素理想
根扩张
素分解律
Prime ideal, Radical extension, Prime ideal decomposition law.