期刊文献+

基于小波变换的带钢表面缺陷图像增强算法 被引量:3

Image Enhancement Algorithm for Strips Surface Defect Image Based on Wavelet Transform
下载PDF
导出
摘要 针对传统图像增强算法在处理有大量噪声、光照不足或不均匀的图像,尤其是实际现场的带钢表面图像时效果较差的问题,提出基于小波变换的图像增强算法,将其应用于冷轧带钢表面缺陷图像的增强中。对比实验结果表明,该方法的增强效果和抗噪性能明显优于传统算法。 Traditional image enhancement algorithms can not get ideal effect when processing the images with lots of noises and insufficient or non-symmetric light, especially for surface images of cold rolled strips on industrial site. To settle the problem, this paper proposes a wavelet-based algorithm for image enhancement and applies it to enhance strips surface defect images. Experiments show that the algorithm excels traditional ones in image enhancement effects and anti-noise capabilities.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第2期227-229,共3页 Computer Engineering
基金 国家自然科学基金资助项目(50074010) 国家“863”计划基金资助项目(2003AA331080) 河南科技大学人才科学研究基金资助项目(09001121)
关键词 冷轧带钢 表面缺陷图像 小波变换 图像增强 cold rolled strips surface defect image wavelet transform image enhancement
  • 相关文献

参考文献5

二级参考文献21

  • 1徐科.小波分析在设备故障诊断中的应用研究:[博士学位论文].北京:北京科技大学,1998..
  • 2Kenneth R Castleman 朱志钢(等译).数字图像处理[M].北京:电子工业出版社,1996.445.
  • 3郑南宁,计算机视觉与模式识别,1998年,80页
  • 4徐科,博士学位论文,1998年
  • 5温熙森,模式识别与状态监控,1997年,127页
  • 6朱志刚(译),数字图像处理,1996年,445页
  • 7Donoho D L.Denoising by soft-threholding[J].IEEE Transactions on Information Theory,1995,41(3):613~627.
  • 8Mallat S.Zero-crossings of a wavelet transform[J].IEEE Transactions on Information Theory,1991,37(4):1019 ~1033.
  • 9Simoncell E P,Freeman W T,Adelson E H,et al.Shiftable multiscale transforms[J].IEEE Transactions on Information Theory,1992,38(2):58~ 60.
  • 10Kingsbury N G.The dual-tree complex wavelet transform:a new technique for shift invariance and directional filters[A].In:Proceedings of 8th IEEE Digital Signal Processing Work shop[C],Bryce Canyon,Utah,USA,1998:86 ~ 89.

共引文献29

同被引文献14

  • 1赵春燕,郑永果,王向葵.基于直方图的图像模糊增强算法[J].计算机工程,2005,31(12):185-186. 被引量:28
  • 2张炜.一种改进的图像模糊增强法[J].生命科学仪器,2006,4(3):29-31. 被引量:9
  • 3Hann G D, Beliers E B. Deinterlacing----An Overview[J]. Proceedings of the IEEE, 1998, 86(9): 1839-1857.
  • 4Kwon O, Sohn K, Lee Chul-Hee. De-interlacing Using Directional Interpolation and Motion Compensation[J]. IEEE Trans. on Consumer Electronics, 2003, 49(1): 198-203.
  • 5Sun Changming. De-interlacing of Video hnages Using a Shortest Path Technique[J]. IEEE Trans. on Consumer Electronics, 2001, 47(2): 225-230.
  • 6Candes E J, Donoho D L. Curvelet: A Surprisingly Effective Nonadaptive Representation for Objects with Edges[C]//Proc. of Curve and Surface Fitting Conference. Nashville, USA: [s. n.], 1999.
  • 7Candes E J, Donoho D L, Demanet L, et al. Fast Discrete Curvelet Transforms[R]. Pasadena, California, USA: Applied and Computational Mathematics, California Institute of Tech- nology, 2005.
  • 8Starck J L, Murtagh F, Candes E J. Gray and Color Image Contrast Enhancement by Curvelet Transform[J]. IEEE Trans. on Image Processing, 2003, 12(6):1-6.
  • 9Xu Jianmao, Sun Junzhong, Zhang Changjiang. Non-linear Algorithm for Contrast Enhancement for Image Using Wavelet Neural Network[C]//Proc. of ICARCV’06. Singapore: [s. n.], 2006.
  • 10Starck J L, Candes E J, Donoho D L. The Curvelet Trans- form for Image Denoising[J]. IEEE Trans. on Image Processing, 2002, 11(6): 670-684.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部