期刊文献+

基于递归神经元网络的动态系统逼近研究

Approximation of Dynamic System by Recurrent Neural Network
下载PDF
导出
摘要 目的研究局部递归神经网络的逼近能力,为递归网络在非线性系统辨识和控制中的应用提供理论依据.方法构造一种结构简洁的局部递归网络模型,使用神经网络基本逼近定理、函数分析理论分析它在一定条件下的逼近能力.结果证明了在适当的初始条件下,通过权值训练可使递归网络输出逼近n维动态系统的有限时间轨迹.结论在适当的初始条件下,局部递归网络具有逼近非线性动态系统有限时间响应的能力,数字仿真验证了理论结果的正确性. Aim\ To study the approximating capacity of a new locally recurrent neural network, and draw much more general conclusions about the nonautonomous system approximation Methods\ A new locally recurrent neural network model was explored, the approximation results were drawn by using the basic neural approximating theorem and other mathematics analyzing theory Results\ Simulation results showed the approximation results were correct and the recurrent neural network was powerful for the nonlinear dynamic system approximation Conclusion\ It is proved that the finite time trajectories of a given n dimensional nonlinear dynamic system with a control input can be approximatd by the states of the locally recurrent network under the condition of the same input and approximate initial states
作者 徐立新
出处 《北京理工大学学报》 EI CAS CSCD 1998年第2期206-211,共6页 Transactions of Beijing Institute of Technology
关键词 递归神经网络 动态系统 逼近 非线性系统 recurrent neural network dynamic system global optimization approximation
  • 相关文献

参考文献2

二级参考文献1

  • 1史忠植,神经计算,1993年,58页

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部