期刊文献+

二值图像恢复的一个非线性正则化方法(英文) 被引量:1

Nonlinear Regularization for Bi-level Image Restoration
下载PDF
导出
摘要 二值图像恢复往往按灰度图像恢复和阈值分割两步来处理,效果不佳。该文利用二值图像的特有性质,提出一种二值图像恢复的非线性正则化方法。同Tikhonov正则化方法不同,该文提出的方法最终归结为一个非线性最优化问题,并采用全局Barzilai和Borwein梯度算法求解此优化问题。实验结果表明,该文的二值图像恢复算法是可行的、有效的。 Restoration of bi-level images is generally performed in two steps, i.e., restoration and thresholding segmentation, which generally does not produce ideal results. This paper proposes a nonlinear regularization method for bi-level image restoration by explicitly using the knowledge of the bi-level image. Unlike the Tikhonov regularization method which eventually results in a linear system of equations, the proposed method leads to a nonlinear optimiza: tion problem, solved with the global Barzilai and Borwein gradient method. Simulation results show feasibility and effectiveness of the method.
作者 张建军 王芹
机构地区 上海大学数学系
出处 《应用科学学报》 CAS CSCD 北大核心 2009年第1期74-78,共5页 Journal of Applied Sciences
基金 supported by the National Natural Science Foundation of China(No.10871225)
关键词 图像恢复 正则化 退化 噪声 image restoration, regularization, degradation, noise
  • 相关文献

参考文献8

  • 1BENZI M, NG M K. Reconditioned iterative methods for weighted Toeplitz least squares problems[J]. Journal on Matrix Analysis and Applications, 2006, 27: 1106-1124.
  • 2KANG M G, KATSAGGELOS A K. General choice of the regularization functional in regularized image restoration[J]. IEEE Transactions Image Processing, 1995, 4: 594-602.
  • 3LAM L Y. Blind bi-level image restoration with iterated quadratic programming[J]. IEEE Transactions Circuits and Systems-Ⅱ: Express Briefs, 2007, 54: 52-56.
  • 4LANDI G. A fast truncated Lagrange method for largescale image restoration problems[J]. Applied Mathematics and Computation, 2007, 186: 1075-1082.
  • 5NAGY J G, PALMER K, PERRONE L. Iterative methods for image restoration: a Matlab object oriented approach[J]. Numerical Algorithms, 2003, 36: 73-93.
  • 6RAYDAN M. The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem[J]. SIAM Journal on Optimization, 1997, 7: 26-33.
  • 7BARZILAI J, Borwein J M. Two point step size gradient methods[J]. IMA Journal on Numerical Analysis, 1988, 8: 141-148.
  • 8GRIPPO L, LAMPARIELLO F, LUCIDI S. A nonmonotone line search technique for Newton's method[J]. SIAM Journal Numerical Analysis, 1986, 23: 707-716.

同被引文献15

  • 1Zhang Peng,Zhang Xiaojuan, Fang Guangyou.Compari- son of the knagmg resolutions of time reversal and back- projection algorithms ha EM inverse scattering[J].IEEE Geosci.Remote Sens.Lett.,2013,10(2):357-361.
  • 2刘广东.乳腺癌检测的时域微波成像算法研究[D].南京:南京邮电大学,2011.
  • 3Gennarelli G, Soldovieri F. A linear inverse scattering algorithm for radar hnaghag ha multipath environments [J]. IEEE Geosci. Remote Sens. Lett.,2013,10(5): 1085- 1089.
  • 4Mojabi P,LoVetri J. A prescaled multiplicative regular- ized Gauss-Newton inversion[J]. IEEE Trans. Antennas Propag.,2011,59(8):2954-2963.
  • 5Wang Y M, Chew W C.An iterative solution of two- dimensional electromagnetic inverse scattering problem[J].Int. J. Imaging Syst.Technol.,1989,1(1):100-108.
  • 6Chew W C,Wang Y M.Reconstruction of two-dimen- sional pcnnittivity distribution using the distorted Born iterative method[J].IEEE Trans.Med.Imaging,1990,9(2): 218-225.
  • 7Takenaka T, Jia H,Tanaka T. Microwave inutging of electrical property dislrautiom by a forward-backward time-stepping method[J]. J. Eleetromagn. Waves Appl., 2000,14(12):1609-1626.
  • 8Ali M A,Moghaddam M.3D nonlinear super-resolution microwave inversion technique using timne-domain data [J]. IEEE Tram. Antennas Propag.,2010,58 (7):2327- 2336.
  • 9Taflove A,Hagness S C.Computational electrodynam- its:The finite-difference thne-domain method(3rd ed.) [M].Artech:House press,2005.
  • 10Tikhonov A N,Arsenin V Y.Solutions of m-posed prob- lems[J].SIAM Rev,1979,21 (2):266-267.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部