期刊文献+

基于被动图像的探测器着陆过程中岩石检测 被引量:3

Rock Detection in the Landing of Lunar Probe Based on Passive Image
下载PDF
导出
摘要 基于图像的月球表面障碍自主检测技术是实现探测器在月球表面安全着陆的关键。本文主要研究了基于被动图像的月球表面障碍物之一的岩石的检测技术。首先将最大二维熵阈值分割用于岩石阴影的检测;其次将岩石轮廓线提取技术与阴影检测结果结合以获取精确的拟合椭圆中心点;最后,利用椭圆拟合岩石所在的区域范围。实验表明:相较于传统的仅基于阴影的算法,本文提出的岩石障碍检测算法能更好地拟合出岩石所在区域范围。 For autonomous landing of lunar probe, to develop autonomous landing and hazard avoidance technology is very necessary and the key of this technology is hazard detection. The focus of this paper was to present an algorithm for autonomous rock (one kind of hazard on moon surface) detection based on passive images. The paper could be divided into three parts. Firstly, Maximum 2D Entropy Thresholding was employed for detection of rock shadow. Secondly, the result of shadow detection was combined with rock contour extraction for more precise center point of ellipse which describes rock area. Finally, the parameters of this ellipse were computed and rock areas were confirmed. Experimental studies demonstrate that the algorithm of rock detection can describe scope of rock area more successfully than only shadow-based method.
出处 《光电工程》 CAS CSCD 北大核心 2009年第1期82-87,共6页 Opto-Electronic Engineering
基金 江苏省研究生创新基金(CX07B_113z) 南京航空航天大学博士创新基金(BCXJ07-06)
关键词 被动图像 岩石检测 阴影检测 二维最大熵 passive image rock detection shadow detection Maximum 2D Entropy
  • 相关文献

参考文献14

  • 1Epp C D, Smith T B. Autonomous Precision Landing and Hazard Detection and Avoidance Technology[C]//Proceedings of IEEE Aerospace Conference. Houston: NASA, 2007: 1-7.
  • 2Andres Huertas, Cheng Yang, Madison R. Passive imaging Based Multi-cue Hazard Detection for Spacecraft Safe Landing[C]// Proceedings of IEEE Aerospace Conference. Big Sky, Montana: Pasadena, CA, 2006, 2: 18-28.
  • 3Amidi O, Kanade T, Fujita K. A visual odometer for autonomous helicopter flight [J]. Journal of Robotics and Autonomous Systems(S0921-8890), 1999, 28: 185-193.
  • 4Castano R, Judd M, Estlin T, et al. Current Results from a Rover Science Data Analysis System[C]//Proceedings of IEEE Aerospace Conference. Big Sky, Montana: Pasadena, CA, 2005, 2: 356-365.
  • 5Castano R, Estlin T, Gaines D, et al. Onboard Autonomous Rover Science[C]//Proeeedings of IEEE Aerospace Conference. Big Sky, Montana: Pasadena, CA, 2007, 2: 1-13.
  • 6Song Y H. Automated Rock Segmentation for Mars Exploration Rover Imagery[C]//39th Lunar and Planetary Science Conference, (Lunar and Planetary Science ⅩⅩⅩⅨ). League City, Texas: [s.n.], 2008: 2043-2051.
  • 7Gulick V C, Morris R L, Ruzon M A, et al. Autonomous image analysis during the 1999 Marsrokhod rover field test [J]. Geophysical Research, 2001, 106(E4): 7745-7764.
  • 8Matthies L, Huertas A, Cheng Yang, et al. Landing hazard detection with stereo vision and shadow analysis[C]//AIAA Infotech at Aerospace Conference. Rohnert Park, CA: [s.n.], 2007: 1244-1253.
  • 9Matthies L, Huertas A, Cheng Yang, et al. Stereo vision and shadow analysis for landing hazard detection[C]// IEEE International Conference on Robotics and Automation (ICRA). Pasadena, CA: IEEE, 2008: 2735-2742.
  • 10David R Thompson, Trey Smith, David Wettergreen. Data Mining During Rover Traverse: From Images to Geologic Signatures[C]//8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Haus der Bayerischen Wirtschaft Munchen, Germany: [s.n.], 2005: 324-335.

共引文献1

同被引文献27

  • 1HUERTAS A, YANG C, MADISON R. Passive imaging based multi-cue hazard detection for spacecraft safe landing[C]//2006 IEEE Aerospace Conference. Big Sky, Montana: IEEEE Press, 2006(2): 1-14.
  • 2YANG C, JOHNSON A E, MATTHIES L H, OLSEN C F. Optical landmark detection for spacecraft navigation[C]//Proceeding of the 13th AAS/AIAA Space Flight Mechanics Meeting. Ponce, Puerto Rico: AIAA Press, 2003: 1785-1803.
  • 3BUE B D, STEPINSKI W F. Machine detection of martian impact craters from digital topography data[J]. IEEE Transaction on Geoscience and Remote Sensing, 2007, 45(1): 265-274.
  • 4MENDEZ A F. Crater marking and classification using computer vision[C]//Progress in Pattern Recognition, Speech and Image Analysis. Berlin: Springer, 2003: 79- 86.
  • 5VINOGRADOVA T, BURL M, MJOSNESS E. Training of a crater detection algorithm for Mars crater imagery[C]// 2002 IEEE Aerospace Conference, 2002, 7: 3201-3211.
  • 6WETZLER P G, HONDA R, ENKE B, MERLINE W J, CHAPMAN C R, BURL M C. Learning to detect small impact craters[C]//Proceeding of 7th IEEE-Workingshops on Application of Computer Vision and Workshops on Motion and Video Computing, 2005, 1: 178-184.
  • 7KIM J, MULLER J, VAN GASSELT S, MORLEY J, NEUKUM G. Automated crater detection, a new tool for Mars cartography and chronology[J]. Photogrammetric Engineering and Remote Sensing, 2005(71): 1205-1217.
  • 8KIM J, MULLER J, VAN GASSELT S, MORLEY J, NEUKUM G. Automated crater detection, a new tool for Mars cartography and chronology[J]. Photogrammetric Engineering and Remote Sensing, 2005(71): 1205-1217.
  • 9BANDEIRA L, SARAIVA J, PINA P. Development of a methodology for automated crater detection on planetary imagesIC]//Proceedings of the 3rd Iberian Conference on Pattern Recognition and Image Analysis. Iberia: [s.n.], 2007(4477): 193-200.
  • 10ZABIH R, WOODFILL J. Non-parametric local transforms for computing visual correspondence[C]//The European Conference on Computer Vision, 1994: 2(151- 158).

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部