期刊文献+

粒子群优化的聚类方法在图像分割中的应用 被引量:4

Application of Clustering Method Based on Particle Swarm Optimization in Image Segmentation
下载PDF
导出
摘要 图像分割和对象提取是从图像处理到图像分析的关键步骤。K-均值聚类算法和粒子群优化方法结合,即将K-均值方法的结果作为一个粒子并采用粒子群优化的方法,通过适应度函数,利用新的分类中心调整粒子位置,产生新的聚类中心。并将此方法应用于图像的分割。最后,将两种方法的处理结果进行了比较,结果表示基于PSO聚类方法对图像的分割效果比原算法有所改进。 Image segmentation and object extraction are the key steps in image processing. We put forward a new algorithm combining Particle Swarm Optimization (PSO) with K-means algorithm. In the new algorithm, the results of K-means algorithm is used as a particle, and PSO is used to generate a new clustering center by adjusting the particle position with new classification center through fitness function. The algorithm is used in image segmentation to get the center of clustering. Results of K-means algorithm and PSO based clustering method were analyzed, which showed that the later fits the image segmentation better.
出处 《电光与控制》 北大核心 2009年第2期5-6,17,共3页 Electronics Optics & Control
基金 湖南省创新基金(06C26214301140)
关键词 粒子群优化 聚类算法 K-均值聚类 图像分割 桢式识别 图像处理 particle swarm optimization clustering method K-means clustering image segmentation pattern recognition image processing
  • 相关文献

参考文献6

  • 1SELIM S Z, ISMAIL M A. K-Means type algorithms: a generalized convergence theorem and characterization of loeal optimality [ J ]. IEEE Trans, Pattern Anal, Math Intell, 1984, 6(1):81-87.
  • 2SHI Y H, EBERHART R C. A modified particle swarm optimizer [ C ]// IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, Piscataway, NJ: IEEE Press, 1998:69-73.
  • 3HIGASSHI N, LBA H. Particle swarm optimization with eaussian mttltation[ C ]//Proc of the Congress on Evolutionary Computation, Canbella, Austarlia: IEEE Press, 2003:72-79.
  • 4KENNEDY J, EBERHART R. Particle swarm optimization[ C ]//Proc IEEE International Conference on Neural Networks, Australia, IEEE Service Center, 1995 : 1942- 1948.
  • 5高尚,杨静宇.一种新的基于粒子群算法的聚类方法[J].南京航空航天大学学报,2006,38(B07):62-65. 被引量:12
  • 6刘向东,沙秋夫,刘勇奎,段晓东.基于粒子群优化算法的聚类分析[J].计算机工程,2006,32(6):201-202. 被引量:26

二级参考文献15

  • 1高尚,杨静宇.求解聚类问题的混合粒子群优化算法[J].科学技术与工程,2005,5(23):1792-1795. 被引量:2
  • 2黄振华 吴诚一.模式识别[M].杭州:浙江大学出版社,1991.40-62.
  • 3Kennedy J,Eberhart R C,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publisher,2001.
  • 4Kennedy J,Spears W M.Matching Algorithms to Problems:An Experimental Test of the Particle Swarm and Some Genetic Algorithms on the Multimodel Problem Generator[C].Proceedings of the IEEE Int'l Conference on Evolutionary Computation,Anchorage,AK,USA,1998-05:78-83.
  • 5Han Jawei,Kamber M.数据挖掘概念与技术[M].北京:机械工业出版社,2001.
  • 6Jain A K,Dubes R C.Algorithms for Clustering Data[M].New Jersey:Prentice-Hall,1988.
  • 7Selim S Z,Ismail M A.K-Means Type Algorithms:A Generalized Convergence Theorem and Characterization of Local Optimality[J].IEEE Trans.Pattern Anal.Mach.Intell,1984,6(1):81-87.
  • 8Pal S K,Wang P P.Genetic Algorithms for Pattern Recognition[M].Boca Raton:CRC Press,1996.
  • 9Bandyopadhyay S,Maulik U.Genetic Clustering for Automatic Evolution of Clusters and Application to Image Classification[J].Pattern Recognition,2002,35(2):1197-1208.
  • 10Eberhart R C, Kennedy J. A new optimizer using particles swarm theory[C]//Proc Sixth International Symposium on Micro Machine and Human Science.Nagoya, Japan, Piscataway, NJ.. IEEE Service Center, 1995:39-43.

共引文献35

同被引文献25

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部