期刊文献+

一种基于端系统竞价博弈的网络资源分配模型

Resource Allocation Model Based on End-system Bidding Game
下载PDF
导出
摘要 随着网络流量以指数形式急剧增长,各种应用对网络资源的需求随之增加,特别是需要严格QoS保证的实时网络多媒体应用要求更多的网络资源。资源分配是QoS分配的最终实现,QoS分配目的是为了进行合理的资源分配,因而有效的资源分配十分重要。在描述资源分配问题的基础上,对资源分配博弈进行了深入研究,提出了能够反映供求关系的基于竞价的网络资源定价机制,并设计了端系统的效用函数,论证了资源分配博弈中Nash均衡点的存在性和唯一性以及实现Nash均衡解端系统的竞价策略。最后,为完善上述资源分配博弈模型,对该模型中的资源价格和相同竞价问题进行进一步讨论。该研究为基于竞价的资源分配算法的设计提供了理论上的支持。 Along with the exponentially rapidly increase in network traffic, the demands on the network resource from various applications grow. Especially, the network multimedia applications with strict QoS-guaranteed require more net- work resource. Network resource allocation is the final implementation of QoS allocation. The aim of QoS allocation is rational resource allocation. Therefore, efficient resource allocation is indispensable. After the problem resource allocation was discussed, we studied the resource game further. The mechanism of network resource pricing, which shows the relation of supply and demand, was presented based on bidding. Subsequently, we designed the utility function of end system and proved the existence and uniqueness of Nash Equilibrium in resource allocation game. Then, the end system's bidding strategy to reach Nash Equilibrium was discussed. At last,we further discussed the problem of resource price and the same bid in above model. The research in this paper provides the theoretic support for the coming design of resource allocation algorithm.
出处 《计算机科学》 CSCD 北大核心 2009年第2期99-102,共4页 Computer Science
基金 国家重点基础研究发展计划(973计划)(2003CB314801) 国家自然科学基金重大研究计划项目(90604003) 国家自然科学基金项目(60603067)的资助
关键词 资源分配博弈 NASH均衡 竞价 效用 Resource allocation game, Nash equilibrium, Bidding, Utility
  • 相关文献

参考文献12

  • 1Semret N. Market Mechanisms for Network Resource Sharing [D]. PhD dissertation. Department of Electrical Engineering, Columbia University, 1999
  • 2Liu J Q. A QoS-driven Resource Allocation Framework based on the Risk Incursion Function and its Incorporation into a Middleware Architecture & Mechanisms Supporting Distributed Fault-tolerant Real-time Computing Applications[D]. PhD dissertation. University of California, Irvine,December 2001
  • 3Rajkumar R, Lee C, Lehoczky J, et al. Practical Solutions for QoS-based Resource Allocation Problems [A]//Proc. of the 19th IEEE Real-Time Systems Symposium. Madrid, Spain, December 1998:296-306
  • 4Baruah S K,Cohen N K, Plaxton C G, et al. Proportionate Progress:A Notion of Fairness in Resource Allocation [J]. Algorithmica, 1996,15(6) : 600-625
  • 5Archer A, Tardos E. Truthful Mechanisms for One - parameter Agents [A]// Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science. October 2001:482-491
  • 6Jin Y, Kesidis G. Nash Equilibria of a Generic Networking Game with Applications to Circuit-Switched Networks [A]// Proc. of IEEE INFOCOM 2003. San Francisco, April 2003,2:1242-1249
  • 7Cao X R, Shen H X, Milito R, et al. Internet Pricing with a Game Theoretical Approach: Concepts and Examples [J]. IEEE/ACM Transactions on Networking,2002,10(2) :208-216
  • 8Roth A E. Game Theory as a Tool for Market Design [A]// Game Practice:Contributions from Applied Game Theory. Kluwer, 2000 : 7-18
  • 9Walrand J, Varaiya P. High-performance Communication Networks[M]. 2nd edition. Morgan Kaufman, 2000
  • 10Shenker S J, Clark D, Estrin D, et al. Pricing in Computer Networks; Reshaping the Research Agenda[A]. ACM SIGCOMM Computer Communication Review, SIGCOMM 1996, Stanford, CA, April 1996,26 : 19-43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部