期刊文献+

基于数据场的粗糙聚类算法 被引量:9

Rough Clustering Algorithm Based on Data Field
下载PDF
导出
摘要 聚类分析是数据挖掘的研究热点。传统的聚类算法都是把一个对象精确地划分到一个聚类簇中,类别之间的界限是非常精确的。随着Web挖掘技术的发展,精确地划分每个对象的聚类算法面临着巨大的挑战。根据数据场理论和经典粗糙集理论所具有处理不精确与不确定性数据的特性,提出一种新的基于数据场的粗糙聚类算法,该粗糙聚类算法采用势值作为对象的划分依据,避免传统粗糙聚类算法一贯采用基于欧氏距离的划分方法。算法首先通过对数据对象进行粗分然后再不断迭代细分,直至形成稳定的聚类簇。实验分析过程中,把提出的算法与粗糙K-means算法和粗糙K-medoids算法进行了比较,结果表明该算法在交叉数据集上具有较好的聚类效果,而且收敛速度较快。 Clustering analysis is the hotspot in Data mining, all the conventional clustering algorithms precisely put the each object into one cluster, the bounders between clusters are precise, as the development of the Web mining, clustering algorithms that precisely divide each object face great challenges. Based on the data field theory and classic rough set theory's character that processes the uncertainty and imprecise data, a novel rough clustering algorithm based on data field was proposed, it divides the objects through computing potential value, which avoids the conventional rough clustering partition method based on euclidean distance. The approach iterates from rough to un-rough incessantly till the stable clusters form. At the experimental analysis process, we compared the algorithm that we proposed with rough K- means algorithm and rough K-medoids algorithm, the result shows the algorithm that we proposed has better clusters on the crossed datasets and fast convergence.
出处 《计算机科学》 CSCD 北大核心 2009年第2期203-206,244,共5页 Computer Science
基金 国家自然科学基金资助项目(60475019 60775036) 2006年博士学科点专项科研基金(20060247039)资助
关键词 粗糙聚类 数据场 势值 Davies-bouldin指标 Rough clustering, Data field, Potential value, Davies-bouldin index
  • 相关文献

参考文献2

二级参考文献10

  • 1Jain A K,Murty M N,Flynn P J.Data clustering:a review[J].ACM Computing Surveys,1999,31(3):264-323.
  • 2Za(i)ane O R,Foss A,Lee C H,Wang W.On data clustering analysis:scalability,constraints and validation[A].Proceedings of the Sixth Pacific Asia Conference on Knowledge Discovery and Data Mining[C].Taiwan:Springer-Verlag,2002.28-39.
  • 3Zhang T,Ramakrishnman R,Linvy M.BIRCH:an efficient method for very large databases[A].Proceedings of ACM SIGMOD International Conference on Manangement of Data[C].Canada:ACM Press,1996.103-114.
  • 4Guha S,Rastogi R,Shim K.CURE:an efficient clustering algorithm for large databases[A].Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data[C].Seattle:ACM Press,1998.73-84.
  • 5George K,Han E H,Kumar V.CHAMELEON:a hierarchical clustering algorithm using dynamic modeling[J].IEEE computer,1999,27(3):329-341.
  • 6Wright W E.Gravitational clustering[J].Pattern Recognition,1977,9(3):151-166.
  • 7Oyang Y J,Chen C Y,Yang T W.A study on the hierarchical data clustering algorithm based on gravity theory[A].The 5th European Conference on Principles and Practive of Knowledge Discovery in Databases(PKDD2001)[C].Freiburg:Springer-Verlag,2001.350-361.
  • 8Landau L D,Lifshitz E M.The classical theory of fields[M].Beijing:Beijing World Publishing Ltd,1999.
  • 9淦文燕.聚类-数据挖掘中的基础问题研究[D].南京:解放军理工大学,2003.
  • 10钱卫宁,周傲英.从多角度分析现有聚类算法(英文)[J].软件学报,2002,13(8):1382-1394. 被引量:86

共引文献110

同被引文献111

引证文献9

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部