期刊文献+

基于临界带特征矢量距离的端点检测算法 被引量:2

Voice Activity Detection Method Based on Selected Sub-bands Vector Distance
下载PDF
导出
摘要 端点检测是语音数字信号处理中一个重要的环节。在前人研究的基础上提出了一种新的基于临界带特征矢量距离的端点检测方法,由计算得到的每帧各临界带中的功率谱之和作为特征矢量,并且通过计算各帧之间的矢量距离得到其距离轨迹,以此设定门限进行语音端点的检测。对比实验表明,相对于基于谱熵的算法及基于倒谱距离的算法,本方法具有更好的鲁棒性和较高的正确率。 Voice activity detected (VAD) is a very important step for speech signals processing, a new method of the VAD was proposed based on the selected sub-bands vector distance. It calculates the summation of power spectrum in very frame as characteristic vector. For detecting the voice activity, the method calculates the characteristic vector distances between frames to acquire the distance track. Theoretical analysis and experimentation show that compared with entropy-based algorithm and cepstrum-based algorithm this method has better robustness and higher correctness.
出处 《计算机科学》 CSCD 北大核心 2009年第2期220-221,237,共3页 Computer Science
基金 民航总局科技基金项目资助(E9905)资助
关键词 端点检测 临界带 特征矢量距离 Voice activity detected, Selected sub-bands, Characteristic vector distance
  • 相关文献

参考文献6

二级参考文献12

  • 1[1]L.Rabiner, et al. Fundamentals of speech recognition[M]. Prentice Hall,1999.
  • 2[2]Texas Instruments Inc.. TMS320C54X DSP Reference Set. Volume 5:Enhanced Peripherals[Z]. Texas Instruments Inc., 1999.
  • 3[3]Analog Devices Inc.. General Purpose Analog Front End AD73311's Datasheet[Z]. Analog Devices Inc., 2000.
  • 4[6]Lingyun Gu, Jianbo Gao, Harris, A.G. Endpoint detection in noisy environment using a poincare recurrence metric[A]. Acoustics, Speech, and Signal Processing, Proceedings[C]. 2003.428-431.
  • 5[7]Liang-Sheng Huang, Chung-Ho Yang. A novel approach to robust speech endpoint detection in car environments[A]. Acoustics, Speech, and Signal Processing Proceedings[C]. 2000. 1 751-1 754.
  • 6[8]SuNing He, JueBang Yu. A novel Chinese continuous speech endpoint detection method based on time domain features of the word structure[J].Communications, Circuits and Systems and West Sino Expositions, IEEE 2002,2: 992-996.
  • 7[9]Qi Li, Jinsong Zheng, Tsai, A. Robust endpoint detection and energy normalization for real-time speech and speaker recognition[J]. Speech and Audio Processing, IEEE Transactions on, 2002, 10: 146-157.
  • 8[10]Lingyun Gu, Zahorian, S. A new robust algorithm for isolated word endpoint detection[A]. Acoustics, Speech, and Signal Processing,Proceedings[C]. 2002:4 161-4 167.
  • 9[11]Gin-Der Wu, Chin-Teng Lin. Word boundary detection with mel-scale frequency bank in noisy environment[J]. Speech and Audio Processing,IEEE Transactions on, 2000, 8:541 - 554.
  • 10Lee C H,Automatic Speech and speaker recognition-advanced topics,1996年

共引文献78

同被引文献9

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部