期刊文献+

基于动态主成分子空间的人脸识别算法 被引量:1

Face Recognition Based on Dynamic Principal Component Subspace
下载PDF
导出
摘要 在基于子空间分析的人脸识别中,通常是按照特征值的大小来确认主成分的重要性,并以此为基础构造一个固定的特征子空间。通过人脸图像重建分析,发现固定的特征子空间会给人脸识别带来误差,于是采用多元线性回归分析理论,提出一个动态主成分子空间构造算法。在此基础上,得到了动态PCA(主成分分析)算法和基于Gabor特征的动态PCA算法。由ORL和Georgia Tech人脸数据库上的实验结果表明,该算法不仅减少了主成分数目,而且提高了识别率。 The significance of principal component was determined by the corresponding eigenvalue in face recognition based on subspace analysis, then a static feature subspace was established. However,it could result in an inaccurate performanee by analyzing the process of face reconstruction. A dynamic feature subspace algorithm was proposed according to multiple linear regression analysis. Furthermore, a dynamic principal component analysis (DPCA) and a Gabor feature based dynamic principal component analysis (GDPCA) were brought forward. Experiment results on ORL and Georgia Tech face databases show that the proposed algorithm not only decrease the number of principal components but also increase the correct rate of face recognition.
出处 《计算机科学》 CSCD 北大核心 2009年第2期261-264,共4页 Computer Science
基金 新世纪优秀人才支持计划(NCET) 重庆市计算机网络与通信重点实验室开放基金“基于三维重建的人脸识别研究” 重庆市自然科学基金(No.CSTC2007BB2445)资助
关键词 人脸识别 特征选择 主成分分析 GABOR特征 回归分析 Face recognition, Feature selection, Principal component analysis, Gabor feature, Regression analysis
  • 相关文献

参考文献12

  • 1Kirby M,Sirovich L. Application of the Karhunen-Loeve procedure for the characterizatic>n of human faces. IEEE Trans. Pattern Analysis and Machine Intelligence, 1990,12(1):103-108
  • 2Turk M, Pentland A. Eigenfaces for Recogni - tion. Journal of Cognitive Neuroscience, 1991,3(2):71-86
  • 3Belhumeur P N , Hespanda J , Kriegeman D. Eigenfaces vs. Fi-serfaces: Recognition Using Class Special Linear Projection. IEEE Trans. Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720
  • 4Moghaddam B , Jebara T , Pentland A. Bayesian face recogni - tion. Pattern Recognition,2000,13(11) :1771-1782
  • 5Wang Xiaogang , Tang Xiaoou. A unified fra - mework for sub - space face recognition. IEEE Trans. Pattern Analysis and Machine Intelligence,2004,26 (9) : 1222-1228
  • 6Bartlett M S,Movellan J R,Sejnowski T J. Face Recognition by Independent Component Analysis. IEEE Trans. on Neural Networks, 2002,13(6) : 1450-1464
  • 7Gong Xun , Wang Guoyin. A Dynamic Comp - onent Deforming Model for Face Shape Rec-onstruetion//Proceeding of the International Symposium on Visual Computing 2007, L-NCS 4841. US, 2007:488-497
  • 8Chen Songcan, Zhang Daoqiang, Zhou Zhihua. Face recognition with one training image per person. Pattern Recognition Letters,2002,23(14) :1711-1719
  • 9王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报,2005,28(10):1657-1663. 被引量:41
  • 10Jones J P, Palmer L A. An evaluation ofthe two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 1987,58(6) : 1233-1258

二级参考文献11

  • 1Martinez A., Kak A.. PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(2): 228~233.
  • 2Pentland A., Moghaddam B., Starner. View-based and modular eigenspaces for face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1994, 84~91.
  • 3Swets D.L., Weng J.. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831~836.
  • 4Kirby M., Sirovich L.. Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103~108.
  • 5Turk M., Pentland A.. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991,3(1): 71~86.
  • 6Belhumeur V., Hespanda J., Kiregeman D.. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720.
  • 7Bartlett M.S., Movellan J.R., Sejnowski T.J.. Face recognition by independent component analysis. IEEE Transactions on Neural Networks, 2002, 13(6): 1450~1464.
  • 8Moghaddam B.. Principal manifolds and probabilistic subspaces for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6): 780~788.
  • 9Kim K.I., Jung K., Kim H.J.. Face recognition using kernel principal component analysis. IEEE Signal Processing Letters, 2002, 9(2): 40~42.
  • 10Mika S., Ratsch G., Weston J., Scholkopf B., Muller K.. Fisher discriminant analysis with kernels. In: Proceedings of IEEE Workshop on Neural Network for Signal Processing, Madison, Wisconsin, USA, 1999, 9: 41~48.

共引文献40

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部