期刊文献+

Euler杆大挠度屈曲解析逼近解的构造 被引量:4

Construction of Analytical Approximate Solutions to Buckling of Euler's Column with Large Deflection
下载PDF
导出
摘要 基于Euler杆大挠度屈曲的控制方程,构造了屈曲载荷及最大挠度的高精度解析逼近解.利用Maclaurin展开和Chebyshev多项式将控制方程中的正弦项用三次多项式近似代替,得到一个Duffing型方程,再将牛顿法与谐波平衡法相结合解对应的Duffing方程,从而给出Euler杆大挠度屈曲的解析逼近解.求解过程中只需解线性方程组即可构造出屈曲载荷及最大挠度的解析逼近公式.几乎在自变量的全部取值范围内,给出的公式都有较高的逼近精度. Based on the approximate solutions to governing equation the buckling load of buckling of the Euler' s column with large deflection, analytical and the largest deflection of the column have been established First, the sine term that appears in the governing equation is replaced with a polynomial of degree 3 by means of the Maclaurin series expansion and the Chebyshev polynomial approximation. Subsequently, the resulting Duffing equation is approximately solved by combing the Newton' s method with the method of harmonic balance. The method yields simple linear algebraic equations instead of nonlinear algebraic equations without analytical solution. The new analytical approximations for the buckling load and the largest deflection of the Euler' s column show an excellent agreement with the numerically exact ones, and are valid over nearly the whole range of the independent variable.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第1期40-43,共4页 Journal of Jilin University:Science Edition
基金 国家重点基础研究发展计划973项目基金(批准号:2007CB206904) 吉林大学数学学院(所)青年基金
关键词 屈曲 大挠度 解析逼近 牛顿-谐波平衡法 buckling large deflection analytical approximation Newton-harmonic balance method
  • 相关文献

参考文献6

二级参考文献18

  • 1李鹏松,吴柏生.达芬-谐波振子的改进解析逼近解[J].振动与冲击,2004,23(3):113-116. 被引量:6
  • 2朱华满.屈曲杆最大挠度近似公式的再改进[J].力学与实践,1994,16(1):60-61. 被引量:6
  • 3李鹏松,孙维鹏.达芬-谐波振子解析逼近的新方法[J].吉林大学学报(理学版),2006,44(2):170-174. 被引量:6
  • 4铁摩辛柯.弹性稳定理论[M].北京:科学出版社,1958..
  • 5Mickens R E. Mathematical and Numerical Study of the Duffing-Harmonic Oscillator [ J ]. J Sound Vib, 2001,244 (3) :563-567.
  • 6Nayfeh A H, Mook D T. Nonlinear Oscillations [ M]. New York: Wiley, 1979.
  • 7Mickens R E. Oscillations in Planar Dynamic Systems [ M ]. Singapore: Word Scientific, 1996.
  • 8WU Bai-seng, LI Peng-song. A Method for Obtaining Approximate Analytic Periods for a Class of Nonlinear Oscillators[J]. Meccanica, 2001,36: 167-176.
  • 9WU Bai-seng, LI Peng-song. A New Approach to Nonlinear Oscillations [ J ]. Journal of Applied Mechanics, 2001,68:951-952.
  • 10Gottlieb H P W.Simple Nonlinear Jerk Functions with Periodic Solutions[J].American Journal of Physics,1998,66:903-906.

共引文献18

同被引文献35

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部