期刊文献+

免疫遗传算法学习贝叶斯网等价类 被引量:4

Learning Equivalence Classes of Bayesian Network with Immune Genetic Algorithm
下载PDF
导出
摘要 针对遗传算法学习贝叶斯网存在的问题,提出一种基于骨架搜索的免疫遗传算法学习贝叶斯网等价类,该方法综合了基于约束和打分搜索的方法,可以在遗传过程中避免产生非法结构,并从骨架空间映射到等价类空间进行搜索.实验数据表明,免疫算子的使用可有效缩小搜索空间规模,加快收敛速度,提高执行效率. To the question of drawbacks in learning Bayesian network with genetic algorithm, an immune genetic algorithm was proposed and used to learn the structure of Bayesian network, which combines the constraint based approach with score-search based approach. The algorithm can avoid generating illegal structures ; by means of the property of Markov equivalence, the immune operators maps the search space from skeleton space to Markov equivalent class space. The experiment data show that the search space was decreased, compared with those of the genetic algorithm search in direct acyclic graph space, the convergence speed and the efficiency were improved.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第1期48-56,共9页 Journal of Jilin University:Science Edition
基金 国家自然科学基金重大项目基金(批准号:60496321) 国家自然科学基金(批准号:6057307360603030605030166077309960703022) 国家高技术研究发展计划863项目基金(批准号:2006AA10Z2452006AA10A309) 教育部博士学科点专项科研基金(批准号:20070183057) 吉林省科技发展计划重大项目基金(批准号:20020303) 吉林省科技发展计划项目基金(批准号:20030523) 欧盟项目TH/AsiaLink/010(批准号:111084)
关键词 贝叶斯网 结构学习 马尔科夫等价 免疫遗传算法 条件独立测试 Bayesian network structural learning Markov equivalence immune genetic algorithm conditional independence test
  • 相关文献

参考文献24

  • 1Chickering D M. Learning Bayesian Networks Is NP-complete [C]//Learning from Data. Berlin: Springer, 1996: 121-130.
  • 2Chickering D M, Heckerman D, Meek C. Large-sample Learning of Bayesian Networks Is NP-hard [ J ]. Journal of Machine Learning Research, 2004, 5 : 1287-1330.
  • 3刘大有,王飞,卢奕南,薛万欣,王松昕.基于遗传算法的Bayesian网结构学习研究[J].计算机研究与发展,2001,38(8):916-922. 被引量:43
  • 4Judea P. Probabilistic Reasoning in Intelligent Systems [ M]. San Francisco: Morgan Kaufmann, 1988.
  • 5Cooper G F, Herskorits E. A Bayesian Method for the Induction of Probabilistic Networks from Data [ J ]. Machine Learning, 1992, 9(4): 309-347.
  • 6I-Ieckerman D, Geiger D, Chickering D M. Learning Bayesian Networks: the Combination of Knowledge and Statistical Data [J]. Machine Learning, 1995, 20(3): 197-243.
  • 7Lain W, Bacchus F. Learning Bayesian Belief Networks: an Approach Based on the MDL Principle [ J ]. Computational Intelligence, 1994, 10 (3) : 269-293.
  • 8Schwarz G. Estimating the Dimension of a Model [J]. Annals of Statistics, 1978, 6(2) : 461-464.
  • 9Cheng J, Greiner R, Kelly J, et al. Learning Bayesian Networks from Data: an Information-theory Based Approach [ J ]. Artificial Intelligence, 2002, 137 (1/2) : 43-90.
  • 10Thomas V, Judea P. Equivalence and Synthesis of Causal Models [ C ]//Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence. New York : Elsvier, 1991 : 255-270.

二级参考文献28

  • 1刘大有 王飞 等.Bayesian网学习.知识科学与知识工程研讨会论文集[M].海口,1999..
  • 2阎平儿 张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000年..
  • 3X Boyen, N Friedman, D Koller. Discovering the hidden structure of complex dynamic systems [A]. Proc of the 15^th Conf on Uncertainty in Artificial Intelligence [ C]. Stockholm, Sewden, 1999.
  • 4Friedman N, Learning belief networks in the presence of miming values and hidden variables [ A],Proc of the Fourteenth Inter, Conf. an Machine Learning (ICML) [ C]. Madison, 1997,452 - 459.
  • 5John Binder, D Koller, S Rusell, K Kanazawa. Adaptive prohabilistic networks with hidden variables [J]. Machine Learning, 1997, 29:217 -244.
  • 6Lauritzen S L, The EM algorithm for graphical association models with missing dala [Z]. Computational Stalistics and Data Analysis 19:191 -201.
  • 7Forbes J, T Huang, K Kanazawa, S Russell. The BATmobile: Towards a Bayesian automated taxi [A]. Proc. of 1995 Intel. Joint Conf. on Artificial Intelligence [C]. Montreal Canada, 1995.
  • 8Zweig G, Russell S. Speech recognition with dynamic bayesian networks[ A ]. Proc. of AAAl-98 [ C]. Madison, Wisconsin : AAAI Press, 1998.
  • 9N Friedman, K Murkey, S Russell. Lcarning the structure of dynamic probabilistic networks [ A]. Proc. of the 14^th Conf on Uncertainty in Artificial Intelligence[C]. Madison, 1998. 139- 147.
  • 10阎平凡,人工神经网络与模拟进化计算,2000年

共引文献56

同被引文献30

  • 1王利民,李雄飞,张海龙.基于广义信息论的贝叶斯分类器动态建模[J].吉林大学学报(工学版),2009,39(3):776-780. 被引量:5
  • 2董立岩,刘光远,苑森淼,李永丽,孙铭会.混合式朴素贝叶斯分类模型[J].吉林大学学报(信息科学版),2007,25(1):57-61. 被引量:8
  • 3ZHANG DAN DAN ,XIE GUANG MING, YU JUN ZHI,et al. Adaptive task assignment for multiple mobile robots via swarm intelligence approach[J].Robotics and Autonomous Systems, 2007,,55(7) : 572-588.
  • 4Hartemink A J,Gifford D K,Jaakkola T S,et al.Combing Location and Expression Data for Principled Discovery of Genetic Regulatory Network Models[C] //Proc Pacific Symposium on Biocomputing.Kauai:World Scientific Press,2002:437-449.
  • 5WANG Yong,Joshi T,ZHANG Xiang-sun,et al.Inferring Gene Regulatory Networks from Multiple Microarray Datasets[J].Bioinformatics,2006,22(19):2413-2420.
  • 6Friedman N,Linial M,Nachman I,et al.Using Bayesian Networks to Analyze Expression Data[J].Journal of Computational Biology,2000,7(3/4):601-620.
  • 7Cooper G F,Herskovits E.A Bayesian Method for the Induction of Probabilistic Networks from Data[J].Machine Learning,1992,9(4):309-347.
  • 8Lee T I,Rinaldi N J,Robert F,et al.Transcriptional Regulatory Networks in Saccharomyces Cerevisiae[J].Science,2002,298:799-804.
  • 9HU Hai-yan,YAN Xi-feng,HUANG Yu,et al.Mining Coherent Dense Subgraphs Across Massive Biological Networks for Functional Discovery[J].Bioinformatics,2005,21(1):213-221.
  • 10CLERC M. Binary Particle Swarm Optimizers: Toolbox, Derivations, and Mathematical Insights [ EB/OL ]. [ 2010-05 ]. [2005-02]. http: //clerc. maurice, free. fr/pso.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部