期刊文献+

基于遗传算法的超磁致伸缩执行器优化 被引量:3

Optimization for giant magnetostrictive actuator based on genetic algorithm
下载PDF
导出
摘要 提出了超磁致伸缩执行器(GMA)优化设计模型,并应用多目标遗传算法对超磁致伸缩执行器进行优化设计.模型优化目标包括:减少执行器导磁回路磁阻使Terfenol-D棒上磁场强度高;空心线圈产生的磁场强度高;Terfenol-D棒上磁场均匀;线圈的效率系数大和线圈与Terfenol-D棒间气隙小.优化变量包括:Terfenol-D棒的尺寸、执行器导磁回路结构尺寸、导磁回路材料的磁导率和线圈结构.根据设计要求选取变量范围,利用非支配排序遗传算法(NSGA)在整个参数空间内搜索,得到执行器的主要参数,应用有限元软件ANSYS分析验证了该结构设计的合理性,并试制了执行器. The optimization design model of giant magnetostrictive actuator (GMA) was presented and the multi-object genetic algorithm was applied for the optimization design of GMA. The optimal objects of the model included: maximization for magnetic field density of Terfenol-D rod by reducing the magnetic reluctance, maximization for magnetic field density of coil, homogeneous magnetic field of Terfenol-D rod, maximization for efficiency coefficient of coil and minimization for gap between Terfenol-D rod and coil. The optimization variables included: the size of Terfenol-D rod, the structure of magnetic flux path of actuator, the permeability of parts and the structure of coil. The domain of optimal variables was determined according to the demand for application. The fittest parameters of GMA were obtained using non-dominated sorting genetic algorithm (NSGA) by the search in parameter space. The application of finite element software ANSYS demonstrated the rationality of optimization structure of GMA and the GMA was fabricated.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第1期13-17,共5页 Journal of Zhejiang University:Engineering Science
基金 国家“863”高技术研究发展计划资助项目(2006AA04Z233) 国家自然科学基金资助项目(50575205) 国家教育部博士点基金资助项目(20070335204)
关键词 超磁致伸缩执行器 优化设计 多目标遗传算法 非支配排序遗传算法 giant magnetostrictive actuator (GMA) optimization design multi-object genetic algorithm non-dominated sorting genetic algorithm (NSGA)
  • 相关文献

参考文献12

二级参考文献41

  • 1邬义杰,刘楚辉.超磁致伸缩驱动器设计方法的研究[J].浙江大学学报(工学版),2004,38(6):747-750. 被引量:19
  • 2邬义杰,项占琴.基于超磁致伸缩材料的活塞异形销孔加工原理研究[J].浙江大学学报(工学版),2004,38(9):1185-1189. 被引量:18
  • 3柳美蓉 蒋成保 等.悬浮区熔法制备TbDyFe定向超磁致伸缩合金[J].材料研究学报,2002,16(3):307-312.
  • 4CLARK A E. Ferromagnetic material [M]. Amsterdam: North-Holland Publishing Company, 1980.
  • 5ASHLEY S. Magnetostrictive actuators [J]. China Mechanical Engineering, 1998, 120(6):68-69.
  • 6ANJANAPPA M, BI J. A theoretical and experimental study of magnetostrictive mini-actuator [J]. Smart Material Structure, 1994,(3):83-91.
  • 7CLARK A E, CROWDER D N. High temperature magnetostriction of TbFe2 and Tb27Dy73Fe2 [J]. IEEE Transactions of Magnetics, 1985, MAG21(5):1945-1947.
  • 8NAKAMURA T, NAKANO I, KAWAMORI A, et al. Static and dynamic characteristics of giant magnetostrictive materials under high pre-stress [J]. Journal of Applied Physics, 2001, 40(5):3658-3663.
  • 9WAKIWAKA H, AOKI K, YOSHIKAWA T, et al. Maximum output of a low frequency sound source using giant magnetostrictive material [J]. Journal of Alloys and Compounds, 1997, 258:87-92.
  • 10DAPINO M J,CALKINS F T,FLATAU A B.On identification and analysis of fundamental issues in Terfenol-D transducer modeling[J].SPIE Smart Structures and Materials,1998,3329:185-197.

共引文献66

同被引文献33

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部