期刊文献+

新型高温空气产生系统压力波动与可行性分析 被引量:1

Feasibility and pressure dynamics of novel system for generating high temperature air
下载PDF
导出
摘要 对一种新型往复式热循环多孔介质燃烧高温空气产生系统进行了冷态试验研究.介绍了系统的工作原理及实验流程,分析了一次风量、二次风比及多孔介质结构参数组合对系统压力波动特性、高温空气模拟气流产生的可行性和产生量的影响.结果表明,一次风量和二次风比对系统压力波动影响较大;一次风量增加有利于高温空气模拟气流产生,当二次风比大于等于1时,模拟气流产生可行,且值越大,可行性越好;一次风量和二次风比增大,高温空气模拟气流量绝对值增加,但从分流比分析,高温空气模拟气流受一次风量影响较小,随二次风比增大而逐渐减小.在空隙率相同的情况下,多孔介质孔径变化对系统压力波动、高温空气模拟气流产生和产生量影响较小.通过比较4种多孔介质结构组合,表明燃烧器内采用渐变型多孔介质燃烧器更有利于增大分流比. A cold mode experiment was conducted to analyze the feasibility and pressure dynamics of a novel reciprocal porous media combustion system with heat recirculation for generating high temperature air. The influence of primary air, secondary air ratio, and porous media structure on the pressure dynamic and the producing characteristics of simulating high temperature air was investigated. Results show that the primary air and secondary air ratio have more influence on the pressure dynamic of the system than the diameter of porous media. When the secondary air ratio is no less than 1, the simulating high temperature air can be obtained. The increase in primary air and secondary air ratio conduces to the producing of simulating high temperature air and increases the absolute amount of simulating high temperature air. But the split ratio is little influenced by primary air and decreases with increasing of the secondary air ratio. The diameter of the porous media has little influence on the split ratio, producing of simulating high temperature air and pressure dynamics at certain porosity. The gradually-varied porous media in the combustor is benefit to increase the split ratio than the other structure combinations.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第1期116-122,共7页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2006AA05Z223) 浙江省自然科学基金资助项目(Y506071)
关键词 高温空气气化 多孔介质燃烧 高温空气 波动特性 high temperature air gasification porous media combustion high temperature air dynamic characteristics
  • 相关文献

参考文献11

  • 1YOSKIKAWA K. Present status and future plan of crest meet project [C]// Proceeding of the 2nd International High Temperature Air Combustion Symposium. Hsinchu,Taiwan, China: Energy and Resource Laboratories, 1999.
  • 2彭好义,蒋绍坚,周孑民.高温空气燃烧技术的开发应用、技术优势及其展望[J].工业加热,2004,33(3):11-15. 被引量:15
  • 3YOSHIKAWA K. Gasification and power generation from solid fuels using high temperature air [C]//Proceeding of High Temperature Air Combustion Symposium. Beijing: The Engineering Institute of China Association on Science and Technology, 1999 : 48 - 68.
  • 4SUGIYAMA S, YOSHIKAWA K, ISHII T, et al. Gasification performance of solid fuels using temperature air at the demonstration plant MEET-Ⅱ[C] // Proceeding of the 4th International Symposium on High Temperature Air Combustion and Gasification. Rome: ENEA of Italy, 2001.
  • 5王关晴,程乐鸣,骆仲泱,岑可法.高温空气燃烧技术中燃烧特性的研究进展[J].动力工程,2007,27(1):81-89. 被引量:24
  • 6曹小玲,蒋绍坚,吴创之,艾元方.高温空气发生器热态实验研究[J].中国电机工程学报,2005,25(2):109-113. 被引量:14
  • 7LUCAS C, SZEWCZYK D, BLASIAK W, et al. High temperature air and steam gasification of densified bio-fuels [J]. Biomass and Bio-Energy, 2004, 27(13) : 563 - 575.
  • 8SUGIYAMA S, SUZUKI N, KATO Y, et al. Gasification performance of coals using high temperature air[J]. Energy,2005, 30(3) : 399 - 413.
  • 9MINT J, YOSKIKAWA K, MURAKAM K. Distributed gasification and power generation from solid wastes [J]. Energy, 2005, 30(11): 2219 - 2228.
  • 10岑可法,程乐鸣,骆仲泱,等.往复式多孔介质燃烧高温空气发生系统及其方法:中国,CN1740639[P].2006-03-01.

二级参考文献48

  • 1李昊,程乐鸣,王恩宇,褚金华,骆仲泱,岑可法.往复式多孔介质燃烧器温度分布的试验研究[J].浙江大学学报(工学版),2005,39(8):1184-1188. 被引量:7
  • 2刘贵苏,陈世英,何耀华,徐辉,曾汉才,郑楚光.宽调节比燃烧技术的研究[J].中国电机工程学报,1996,16(1):54-58. 被引量:5
  • 3王关晴,程乐鸣,骆仲泱,岑可法.高温空气燃烧技术中燃烧特性的研究进展[J].动力工程,2007,27(1):81-89. 被引量:24
  • 4Tanaka R, Hasegawa T. Innovative technology to change flame charactedstics which highly preheated air combustion[C]. Osaka,Japan: Japanese Flame Days-JFRC 20th Anniversary, 1997.
  • 5Simon Lille. Experimental study of single fuel jet in conditions of highly preheated air combustion[C]. Sweden:Licentiate thesis, 1999.
  • 6Yoshikawa K. Gasification and power generation from solid fuels using hightemperature air[C], Beijing: Proceeding of High Temperature Air Combustion Symposium, 1999.
  • 7Oshikawa Y. Present status and future plan of CREST MEET project[C], Taiwan: Proceeding of the 2nd International High Temperature Air Combustion Symposium, 1999.
  • 8Yoshikawa K. R&D on small-scale gasification of solid fuels using high temperature air and steam[C]. ENEA of Italy: Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasification, 2001.
  • 9Sugiyama S, Yoshikawa K, Ishii T et al. Gasification performance of solid fuels using temperature air at the demonstration plant MEET- Ⅱ[C]. ENEA of Italy:Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasification, 2001.
  • 10Ishii T, Yoshitaka E, Yoshikawa K et al. Gasification of coal and wood at the demonstration plant of MEET system, MEET Ⅱ[C]. ENEA ofItaly: Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasification, 2001.

共引文献52

同被引文献16

  • 1曹小玲,蒋绍坚,吴创之,艾元方.高温空气发生器热态实验研究[J].中国电机工程学报,2005,25(2):109-113. 被引量:14
  • 2艾元方,梅炽,蒋绍坚,蒋受宝,张灿.高温空气发生器综合状态图研究[J].工业炉,2006,28(4):1-4. 被引量:1
  • 3王关晴,程乐鸣,骆仲泱,岑可法.高温空气燃烧技术中燃烧特性的研究进展[J].动力工程,2007,27(1):81-89. 被引量:24
  • 4岑可法,程乐鸣,骆仲泱,等.往复式多孔介质燃烧高温空气发生系统及其方法:中国,CN1740639[P].2006-03-01.
  • 5YOSHIKAWA K. R&D on small-scale gasification of solid fuels using high temperature air and steam [C]∥ Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasification. Rome (Italy): \[s.n.\]| 2001, 113.
  • 6OSHIKAWA Y. Present status and future plan of CREST MEET project[C]∥ Proceedings of the 2nd International High Temperature Air Combustion Symposium.Taiwan, China: \[s.n.\] 1999, 17.
  • 7PIAN CCP, YOSHIKAWA K. Development of a high-temperature air blown gasification system[J]. Bioresource Technology, 2001, 79(3): 231241.
  • 8SUGIYAMA S, SUZUKI N, KATO Y, et al. Gasification performance of coals using high temperature air[J]. Energy, 2005, 30(2/4): 399413.
  • 9BANNAI M, HOUKABE A, FURUKAWA M, et al. Development of efficiency-enhanced cogeneration system utilizing high-temperature exhaust-gas from a regenerative thermal oxidizer for waste volatile-organic-compound gases [J]. Applied Energy, 2006, 83(9): 929-942.
  • 10郑成航.低热值气体多孔介质燃烧机理及工业化[D].杭州:浙江大学, 2011.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部