期刊文献+

对羟基苯甲酸丁酯激活囊性纤维化跨膜电导调节因子氯离子通道开放 被引量:1

Butyl-p-hydroxybenzoate stimulates cystic fibrosis transmembrane conductance regulator Cl^- transport
原文传递
导出
摘要 对20种挥发油类化合物中的对羟基苯甲酸丁酯(butyl-p-hydroxybenzoate,Bpb)的CFTR氯离子通道激活作用进行系统的分子药理学研究。利用稳定共表达人CFTR和对卤族元素碘离子高度敏感的荧光绿蛋白突变体(EYFP)的Fischer大鼠甲状腺(FRT)上皮细胞为筛选模型,测定Bpb对CFTR介导的I-内流速度的影响。发现了Bpb对野生型CFTR的Cl-通道具有显著的激活作用;Bpb不能纠正△F508-CFTR蛋白胞内转运的障碍,但却具有纠正其通道开放障碍的功能;Bpb对G551D突变型CFTRCl-通道无激活作用。激活作用具有可逆和剂量依赖的特点,初步机制分析结果表明,它可能是通过与CFTR直接结合而发挥作用的。首次发现了Bpb对CFTRCl-通道有激活作用,为深入研究Bpb的药理学作用提供了新方向,使其有可能成为治疗CFTR有关疾病的先导药物。 This study is to investigate the activation effect of butyl-p-hydroxybenzoate (Bpb) on cAMP-dependent cystic fibrosis transmembrane conductance regulator (CFTR) chloride chainnel gating. A stably transfected Fischer rat thyroid (FRT) epithelial cell lines co-expressing human CPTR and a green fluorescent protein mutant with ultra-high halide sensitivity (EYFP) were used to measure CFTR-mediated iodide influx rates. Bpb was identified as an effective activator of wild-type CFTR chloride channel, it can correct △F508-CPTR gating defects but not processing defect. Bpb can't potentiate G551D-CFTR channel gating. The activity was reversible and dose-dependent. The study also provided clues that Bpb activates CFTR chloride channel through a direct binding mechanism. Our study identified Bpb as a novel structure CFTR activator. Bpb may be useful for probing CFTR channel gating mechanisms and as a lead compound to develop pharmacological therapy for CFTR-related disease.
出处 《药学学报》 CAS CSCD 北大核心 2009年第1期32-37,共6页 Acta Pharmaceutica Sinica
基金 国家自然科学基金资助项目(30570864) 教育部"新世纪优秀人才支持计划"项目(NCET-07-0406) 辽宁省"高等学校优秀人才支持计划"项目(2006R33)
关键词 CFTR氯离子通道 突变 对羟基苯甲酸丁酯 激活剂 CFTR chloride channel mutant butyl-p-hydroxybenzoate activator
  • 相关文献

参考文献31

  • 1Gadsby DC, Vergani P, Csanady L. The ABC protein turned chloride channel whose failure causes cystic fibrosis [J]. Nature, 2006, 440: 477-483.
  • 2Robert R, Savineau JP, Norez C, et al. Expression and function of cystic fibrosis transmembrane conductance regulator in rat intrapulmonary arteries [J]. Eur Respir J, 2007, 30: 857-864.
  • 3Weiner SA, Caputo C, Brescia E, et al. Rectal potential difference and the functional expression of CFTR in the gastrointestinal epithelia in cystic fibrosis mouse models [J]. Pediatr Res, 2008, 63: 73-78.
  • 4Xu WM, Shi OX, Chen WY, et al. Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility [J]. Proc Natl Acad Sci USA, 2007, 104: 9816-9821.
  • 5Pan P, Guo Y, Gu J. Expression of cystic fibrosis transmembrane conductance regulator in ganglion cells of the hearts [J]. Neurosci Lett, 2008, 441: 35-38.
  • 6Horisberger JD. ENaC-CFTR interactions: the role of electrical coupling of ion fluxes explored in an epithelial cell model [J]. Pflugers Arch, 2003, 445: 522-528.
  • 7Chambers LA, Rollins BM, Tarran R. Liquid movement across the surface epithelium of large airways [J]. Respir Physiol Neurobiol, 2007, 159: 256- 270.
  • 8Li J, Allen KT, Sun XC, et al. Dependence of cAMP meditated increases in Cl^- and HCO3^- permeability on CFFR in bovine corneal endothelial cells [J]. Exp Eye Res, 2008, 86: 684-690.
  • 9Kim JK, Yoo HY, Kim S J, et al. Effects of sevoflurane on the cAMP-induced short-circuit current in mouse tracheal epithelium and recombinant Cl^- (CFTR) and K^+ (KCNQ1) channels [J]. Br J Anaesth, 2007, 99: 245-251.
  • 10Cohn JA. Reduced CFTFR function and the pathobiology of idiopathic pancreatitis [J]. J Clin Gastroenterol, 2005, 39: S70-S77.

同被引文献9

  • 1华丹宇,易大年,刘基宁.含氮化合物的构型与构象变化对核磁共振图谱的影响[J].药学学报,2003,38(12):946-949. 被引量:3
  • 2BACHHUBER T, KONIG J, VOELCKER T, et al. Cl^- interference with the epithelial Na^+ channel ENaC [J]. J Biol Chem, 2005, 280(36) : 31587-31594.
  • 3CHAN H C, SHI Q X, ZHOU C X, et al. Critical role of CFTR in uterine bicarbonate secretion and the fertilizing capacity of sperm [J]. Mol Cell Endocrinol, 2006, 250(1-2) : 106-113.
  • 4SCHILF W, BLOXSIDGE J P, JONES J R, et al. Investigations of intramolecular hydrogen bonding in three types of schiff bases by ^2H and ^3H-NMR isotope effects [J]. Magn Reson Chem, 2004, 42(6) : 556-560.
  • 5SHSAHIKANT C S, RUDDLE F H. Impact of transgenic technologies on functional genomics[J]. Curr Issues Mol Biol, 2003,5(3):75-98.
  • 6WEINER S A, CAPUTO C, BRUSCIA E, et al. Rectal potential difference and the functional expression of CFTR in the gastrointestinal epithelia in cystic fibrosis mouse models [ J ]. Pediatr Res, 2008, 63(1): 73-78.
  • 7CACI E, CAPUTO A, HINZPETER A, et al. Evidence for direct CFFR inhibition by CFTRinh-172 based on Arg347 mutagenesis [J]. Biochem J, 2008, 413(1): 135-142.
  • 8MUANPRASAT C, SONAWANE N D, SALINAS D, et al. Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy [ J ]. J Gen Physiol, 2004, 124(2) : 125-137.
  • 9杨明星,林深,陈丽娟,黄凌燕.N-苯甲酰基水杨酰肼合镍(Ⅱ)配合物的电化学性能[J].福建师范大学学报(自然科学版),2003,19(1):64-66. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部