期刊文献+

一种改进的快速数据离散化算法 被引量:2

Improved Fast Discretization Algorithm
下载PDF
导出
摘要 提出一种新的基于粗糙集理论的快速数据离散化算法FRSBD(Fast Rough Set based Discretization Algorithm).文章定义了属性决策关系矩阵等概念,证明了一组基于属性决策关系矩阵的断点判定规则的有效性,并基于该新的断点判定规则,实现了决策表中连续属性值的快速离散化.理论分析说明了FRSBD的正确性和有效性,仿真结果表明该算法优于文献报道的同类算法. This paper presented a fast Rough Sets based diseretization approach, named FRSBD. The approach defines a new conception: The Feature Decision Matrix. A group of diseretization rules based on the Feature Decision Matrix is proved. Based on the novel split rules, we realize fast discretization of continuous features. Theoretical analysis demonstrates that FRSBD is correct and efficient, simulation results show that the performance of it is better than those algorithms reported in literature.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第2期279-282,共4页 Journal of Chinese Computer Systems
基金 中奥科技合作(2007-2009)项目资助 西北大学研究生自主创新项目(07YZZ32)资助
关键词 离散化 粗糙集理论 属性重要性 discretization rough set theory attribute importance
  • 相关文献

参考文献11

  • 1Randy Kerber. ChiMerge: discretization of numeric attributes [C]. In : Proceeding of National Conference on Artificial Intelligence, 1992, 123-128.
  • 2Usama M Fayyad, Keki B Irani. Multi-interval discretization of continuous-valued attributes for classification learning[C]. In: Proceeding of International Joint Conference on Artificial Intelligence, 1993, 1022-1029.
  • 3Jason Catlett. On changing continuous attributes into ordered discrete attributes[C]. In: Proceeding of European Conference on Machine Learning, 1991, 164-178.
  • 4皋军,王建东.一种基于云模式连续型属性离散化的算法[J].计算机应用,2004,24(2):135-137. 被引量:1
  • 5Girish Kumar Singh, Sonajharia Minz. Discretization using clustering and rough set theory[C]. In: Proceeding of International Conference on Computing: Theory and Applications, 2007, 330-336.
  • 6Han J W, Kamber M. Data mining concepts and techniques [M]. Beijing: Machine Press, 2001.
  • 7Hung Son Nguyen, Andrzej Skowron. Quantization of real values attributes : rough set and Boolean reasoning approaches[C]. In : Proceedings of Second Joint Annual Conference on Information Science, Wrightsville Beach, North Carolina, 1995, 34-37.
  • 8Wang Guo-yin. Rough set theory and knowledge acquisition [M]. Xi' an Jiaotong University Press, 2001.
  • 9Pawlak Z. Rough sets: theoretical aspects of reasoning about dat[M]. Boston: Kluwer Academic Publishers, 1991.
  • 10赵军,王国胤,吴中福,唐宏,李华.基于粗集理论的数据离散化方法[J].小型微型计算机系统,2004,25(1):60-64. 被引量:34

二级参考文献9

共引文献33

同被引文献18

  • 1谢宏,程浩忠,牛东晓.基于信息熵的粗糙集连续属性离散化算法[J].计算机学报,2005,28(9):1570-1574. 被引量:134
  • 2王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001:122-123.
  • 3李国正,王猛.支持向量机导论[M].北京:电子工业出版社,2000.
  • 4Hussain F,Liu H,Tan C L,et al.Discretization:an Enabling Technique[J].Data Mining and Knowledge Discovery,2002,6(4):393-423.
  • 5Dougherty J,Kohavi R,Sahami M.Supervised and Unsupervised Discretization of continuous feature[C]//Machine learning:Proc.12th Int'l Conf.1995:194-202.
  • 6Ribeiro M X,Ferreira M R P,et al.Data pre-processing:a new algorithm for feature selection and data discretization[C]//Conference on Soft computing as Transdisciplinary Science and Technology:Proc.5th (CSTST'2008).Cergy-Pontoise,Prance,2008:252-257.
  • 7Nguyen S H.Discretiazaion of Real Value Attributes:A Boolean reasoning approaches[D].Warsaw:Warsaw University,Poland,1997.
  • 8Su Chao-Ton,Hsu Jyh-Hwa.An Extended Chi2 Algorithm for Discretization of Real Value Attributes[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(3):437-441.
  • 9Hettich S,Bay S D.The UCI KDD Archive[DB/OL].http://kdd.ics.uci.edu/,1999.
  • 10Kurgan L A,Cios K J.CAIM Discretization Algorithm[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(2):145-153.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部