期刊文献+

一种改进的小波特征提取算法及其应用 被引量:5

Improved Algorithm of Wavelet Feature Extraction and its Application
下载PDF
导出
摘要 特征提取是模式识别中的一个关键问题.为解决现有的基于灰度空间和梯度方向的小波特征用于目标物分类检测时对光照及背景噪声敏感的问题,提出一种改进的小波特征提取算法,即对感兴趣区域(Region of Interest,ROI)基于HSV颜色模型的V通道分量进行小波金字塔式分解,然后取塔式分解得到的小波系数幅值,对其进行归一化处理,最后进行阈值化处理.将改进的算法应用于基于单目视觉的静态图像后方车辆检测系统中,实验结果表明其能显著提高车辆识别效果,增强系统的鲁棒型. Feature extraction is a key point in pattern recognition field. Currently, the wavelet features based on gray space and gradient orientation are sensitive to the illumination changes and background noise contained to the vehicle region. In order to deal with this problem, an improved algorithm of wavelet feature extraction is proposed. In particular, wavelet pyramid decomposition is performed, which is based on the V channel of the HSV color model of the ROI (Region of Interest), after that the coefficient magnitudes are obtained and then they are scaled, finally the threshold process is performed on the sealed data. With the application in a rear-vehicle detection system for static image based on monocular vision, the experimental results show the significant improvements both in vehicle detection and robustness.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第2期336-340,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60702076)资助 国际科技合作重点项目(2005DFA10260)资助 国家"八六三"高技术研究发展计划项目(2006AA11Z221)资助
关键词 小波变换 特征提取 车辆检测 支持向量机 wavelet transform feature extraction vehicle detection SVM
  • 相关文献

参考文献11

  • 1Matthews N D, An P E, Charnley D, et al. Vehicle detection and recognition in greyscale imagery[J]. Control Eng. Practice, 1996, 4(4) :473-479.
  • 2Goerick C, Detlev N, Werner M. Artificial neural networks in real-time car detection and tracking application [J]. Pattern Recognition Letters, 1996, (17): 335-343.
  • 3Thiang, Lim R, Guntoro A T. Car recognition using gabor filter feature extraction[C]. Circuits and Systems, APCCAS' 02, 2002, (2):451-455.
  • 4Sun Z, Bebis G, Miller R. On-road vehicle detection using gabor filters and support vector machines[C]. IEEE 14th International Conference on Digital Signal Processing, 2002: 1019- 1022.
  • 5Schneiderman H. A statistical approach to 3D object detection applied to faces and cars[C]. CMU-RI-TR-00-06, 2000, (1) : 746-751.
  • 6Papageorgiou C, Poggio T. A trainable system for object detection[J]. International Journal of Computer Vision, 2000, 4(4) : 15-33.
  • 7Sun Z, Bebis G, Miller R. Quantized wavelet features and support vector machines for on-road vehicle detection[C]. 7th International Conference on Control, Automation, Robotics and Vision, 2002, (3) :1641-1646.
  • 8Sun Z, Bebis G, Miller R. On-road vehicle detection: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5):694-711.
  • 9Sun Z,Bebis G, Miller R. Monocular precrash vehicle detection: features and classifiers[J]. IEEE Transactions on Image Processing, 2006, 15(7) :2019-2034.
  • 10Donoho D L, Johnstone I M. Threshold selection for wavelet shrinkage of noisy data[C]. Engineering in Medicine and Biology Society, 1994, Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE 3-6 Nov. 1994, (1):A24- A25.

同被引文献32

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部