期刊文献+

采用支持向量回归机的说话者确认系统

Support Vector Regression Machine Adopted Speaker Verification System
下载PDF
导出
摘要 提出一种基于支持向量回归机的说话者确认方法.该方法利用高斯混合模型中的均值向量连接构成一个超向量来模拟目标说话者的身份特性.以该超向量作为分类样本,利用支持向量回归机的方法进行分类,从而在一定程度上减轻了信道因素对系统识别精度的影响.该方法在NIST2006年说话者识别数据库上实验得到的识别等错误率比采用支持向量分类机方法有了相对12.8%的降低. A speaker verification system based on support vector regression machine (SVR) is presented in this paper. In this paper, we model characteristics of the target speaker by integrating all the mean vectors of Gaussian mixture model (GMM) into a supervector. And then these supervectors are taken to as observations of the Support Vector Regression Machine for classification. This action makes the verification system more robust against outliers or noisy vectors and alleviates the variability of channel affects. Experiments show that the proposed SVR approach outperforms the Support Vector Classification Method at relative reduction of up to 12.8% in equal error ratio (EER) on the NIST 2006 speaker recognition corpus.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第2期367-370,共4页 Journal of Chinese Computer Systems
关键词 支持向量回归 高斯混合超向量 说话者确认 支持向量分类机 support vector regression Gaussian mixture model supervector speaker verification support vector classification machine
  • 相关文献

参考文献8

  • 1Deynolds D A, Quatieri T F, Dunn R B. Speaker verification using adapted gaussian mixture models[J]. Digital Signal Processing, 2000,10(1-3) :19-41.
  • 2Campbell W M, Sturim D E, Reynolds D A. Support vector machines using GMM supervectors for speaker verification[J]. IEEE Signal Processing Letters, 2006,13(5):308-311.
  • 3Collobert R, Bengio S. SVMTorch: support vector machines for large-scale regression problems[J]. J. Mach. Learn. Res., 2001,1 : 143-160.
  • 4Reynolds D A. Channel robust speaker verification via feature mapping[J]. Proc. ICASSP, 2003, II:53-56.
  • 5Claudio Vair, Daniele Colibro, Fabio Castaldo. Channel factors compensation in model and feature domain for speaker recognition[C]. In Odyssey, 2006, June.
  • 6Vladimir N Vapnik. The nature of statistical learning theory [M]. Springer: Vapnik V. N, 1995.
  • 7Ignacio Lopez-Moreno, Ismael Mateos-Gareia, Daniel Ramos, et al. Support vector regression for speaker verification[C]. Interspeeeh 2007, August.
  • 8Matejka P, Burger L, Schwarz P, et al. STBU system for the NIST 2006 speaker recognition evaluation[J]. ICASSP 2007, April.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部