期刊文献+

基于改进的自组织特征映射网络的电能质量检测与识别

Detection and identification of power quality based on improved SOFM network
下载PDF
导出
摘要 针对电能质量扰动信号频谱广(从0~数兆赫兹)、不同扰动信号之间相互叠加的特点,采用小波变换和神经网络(ANN)相结合的方法对电能质量扰动信号进行识别。利用db4小波对IEEE定义的9种电能质量扰动信号进行粗略分类,提取扰动特征信号;与其他文献中不同的是,这里利用一些少量的已知样本对权向量进行初始化,对网络进行非强制性的修正,确定收敛准则,自适应调节学习速率等,从而对自组织特征映射(SOFM)网络进行改进,利用有限的学习样本对神经网络进行训练,提高神经网络分类的精度。用改进的自组织特征映射网络对电能质量扰动信号进行Matlab仿真,结果表明达到了较好的分类效果。 According to its features in spectrum and superposition, a method combining wavelet transform and ANN(Artificial Neural Networks) to identify power quality disturbance is introduced. The eigenvalues of nine power quality disturbances defined by IEEE are extracted using db4. This method, different from other methods, uses less sample vectors to initialize weight vectors, revises the network non-enforcedly, determines the convergence criterion and regulates the learning rate adaptively to improve SOFM(Self Organization-Feature- Map) net and increase identification accuracy with limited samples for neural network training. Matlab simulative results show its effectiveness.
出处 《电力自动化设备》 EI CSCD 北大核心 2009年第2期85-88,93,共5页 Electric Power Automation Equipment
关键词 电能质量 小波变换 自组织特征映射网络 识别 扰动 神经网络 power quality wavelet transform self- organization- feature- map net identification disturbance ANN
  • 相关文献

参考文献14

  • 1林海雪.现代电能质量的基本问题[J].电网技术,2001,25(10):5-12. 被引量:424
  • 2陈祥训.采用小波技术的几种电能质量扰动的测量与分类方法[J].中国电机工程学报,2002,22(10):1-6. 被引量:136
  • 3王成山,王继东.基于小波包分解的电能质量扰动分类方法[J].电网技术,2004,28(15):78-82. 被引量:68
  • 4文继锋,刘沛.一种电能质量扰动检测的新方法[J].中国电机工程学报,2002,22(12):17-20. 被引量:49
  • 5SANTOSO S, POWERS E J. Electric power quality disturbance detection using wavelet transform analysis [C]//The IEEE SP International Symposium on Time - frequency and Time scale Analysis. Philadelphia, USA: IEEE, 1994 : 166-169.
  • 6GAOUDA A M,SALAMA M M A,SULTAN M R. Power quality detection and classification using wavelets multi- resolution signal decomposition []J. IEEE Trans on Power Delivery, 1999,14(4) : 1469-1476.
  • 7HUANG Jiansheng, NEGNEVISKY M, NGUYEN D T. A neural- fuzzy classifier for recognition of power quality disturbances [J]. IEEE Trans on Power Delivery, 2002,17 (2) : 609 - 616.
  • 8SANTOSO S, POWERS E J. Power quality disturbance waveform recognition using wavelet based neural classifier Part 1: theoretical foundation [J]. IEEE Trans on Power Delivery, 1994, 15 ( 1 ) : 222 - 228.
  • 9SANTOSO S, POWERS E J. Power quality disturbance waveform recognition using wavelet based neural classifier Part 2: application [J]. IEEE Trans on Power Delivery,2000,15( 1):229-235.
  • 10PERUNICICB, MALLINI M .WANG Z .et al. Power quality disturbance detection and classification using wavelets and artificial neural networks [C]//Proceeding of IEEE ICHQP Ⅷ. Athens, Greece: IEEE, 1998 : 77-82.

二级参考文献37

  • 1陶兰,江缉光,肖达川.人工神经网络在电力系统暂态安全分析中的应用研究[J].清华大学学报(自然科学版),1994,34(4):62-68. 被引量:5
  • 2[1]Angrisani L, Daponte P, Apuzzo M D. A measument method based on the wavelet transform for power quality analysis[J]. IEEE Trans Power Delivery, 1998, 13(4):990-998.
  • 3[2]Huang S J, et al. Application of morlet wavelets to supervise power system disturbances[J]. IEEE Trans Power Delivery, 1999, 14(1):235-243.
  • 4[3]Gaouda A M,et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J].IEEE Trans. Power Delivery, 1998, 14(4):1469-1476.
  • 5[4]Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems[J]. IEEE Trans Power Delivery, 2000, 15(2):478-485.
  • 6[5]Santoso S, Powers E J, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier?Part 1: theoretical foundation, Part 2: application[J]. IEEE Trans Power Delivery, 2000, 15(1):222-235.
  • 7[6]Poisson O, Rioual P, Meunier M. Detection and measurement of power quality disturbances using wavelet transform[J].IEEE Trans Power Delivery, 2000, 15(3):1039-1044.
  • 8[7]Karimi M, Mokhtari H, Iravani R. Wavelet based on-Line disturbance detection for power quality applications[J]. IEEE Trans Power Delivery, 2000, 15(4):1212-1220.
  • 9[8]Vetterli M, Herley C, Wavelets and filter banks: theory and design[J]. IEEE Trans Signal Process, 1992, 40(9):2207-2232.
  • 10[9]Sweldens W. The Liftinging scheme: a custom-design construction of biorthogonal wavelets[J]. J. Appl. and Comput. Harmonic Analysis, 1996, 3(2):186-200.

共引文献641

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部