期刊文献+

anti-de Sitter空间中具有常高阶平均曲率的类空超曲面的一个注记

下载PDF
导出
摘要 讨论anti-de Sitter空间中具有常高阶平均曲率的紧致类空超曲面,得到该类空超曲面是全脐的充分条件.
作者 高耀文
出处 《数学教学研究》 2009年第1期56-57,共2页
  • 相关文献

参考文献6

  • 1徐森林,胡自胜.anti-de Sitter空间中紧致类空超曲面的积分公式及其在常高阶平均曲率下的应用[J].数学物理学报(A辑),2007,27(2):302-308. 被引量:8
  • 2Goddard AJ.Some remarks onthe exitsence ofspace-like hypersurfaces of constant mean cur-vature[].Math Proc Cambridge Phi Soc.1997
  • 3Cai Kairen,Xu Huiqun.Spacelike hypersurfac-es in de Sitter space with constant higherordermean cruvatrue[].International Journal ofMathematics and Mathematical.2006
  • 4Montiel S,Ros A.Compact hypersurfaces:theAlexandrov theorem for higher order meancurvatures[].Differential GeometryPro-ceedings Conference in Honor of Manfredo doCarmo.1991
  • 5Aledo J A,Alias L J,Romero A.Integral formulas for compact space-like hypersurfaces in de sitter space: Applications to the case of constant higher ordermean curvature[].Journal of Applied Geophysics.1999
  • 6Garding L.An inequality for hyperbolic polynomials, J[].Journal of Mathematics and Mechanics.1959

二级参考文献7

  • 1Goddard A J.Some remarks on the existence of space-like hypersurfaces of constant mean curvature.Math Proc Cambrige Phil Soc,1977,82:489-495
  • 2Montiel S.An integral inequality for compact space-like hypersurfaces in de Sitter space and applications to the case of constant mean curvature.Indiana Vniv Math J,1988,37:909-917
  • 3Aledo J A,Alías L J,Romero A.Integral formulas for compact space-like hypersurfaces in de Sitter space:Applications to the case of constant higher order mean curvature.Geom Phy,1999,31:195-208
  • 4Aledo J A,Alías L J.Curvature properties of compact spacelike hypersurfaces in de Sitter space.Differential Geom Appl,2001,14:137-149
  • 5Ulo Lumiste.Semi-parallel time-like surfaces in Lorentzian spacetime forms.Differential Geom Appl,1997,7:59-74
  • 6Hardy G,Littlewood J E,Poyla G.Inequalities.Cambridge:Cambridge University Press,1952
  • 7李海中,陈维桓.De Sitter空间中紧致类空超曲面的积分公式及其Goddard猜想的应用[J].数学学报(中文版),1998,41(4):807-810. 被引量:9

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部