摘要
频率跟踪问题是一个复杂的非线性问题,混沌调频方式的引入更加大了频率跟踪的难度,传统的频率跟踪技术——扩展卡尔曼滤波(EKF)已无法跟踪如此复杂的频率变化。为此,该文首先建立了频率跟踪问题的状态空间模型,在此基础上引入了新颖的粒子滤波技术,分析了该技术的可行性,推导了混沌调频信号频率跟踪的后验克拉美-罗(PCRB)下界,实验仿真验证了该技术的优越性。
Frequency tracking is a complex nonlinear problem, which is more difficult for the chaotic frequency modulation signal in which the traditional Extended Kalman Filter (EKF) can not work well. Thus, a new state space model for the frequency tracking is proposed, and the particle filter which can be used in nonlinear and non-Gaussian environments is introduced. Further more, the feasibility of the particle filter is analyzed, also the Posterior Cramer-Rao Bounds (PCRB) for the frequency tracking of the chaotic frequency modulation signal is derived. The simulation demonstrates the superiorities of particle filtering at last.
出处
《电子与信息学报》
EI
CSCD
北大核心
2009年第1期104-107,共4页
Journal of Electronics & Information Technology
关键词
混沌调频
频率跟踪
粒子滤波
扩展卡尔曼滤波
Chaotic frequency modulation
Frequency tracking
Particle filtering
Extended Kalman Filter (EKF)