期刊文献+

一种稳健的混沌调频信号频率跟踪技术 被引量:2

A Robust Frequency Tracking Technology for Chaotic Frequency Modulation
下载PDF
导出
摘要 频率跟踪问题是一个复杂的非线性问题,混沌调频方式的引入更加大了频率跟踪的难度,传统的频率跟踪技术——扩展卡尔曼滤波(EKF)已无法跟踪如此复杂的频率变化。为此,该文首先建立了频率跟踪问题的状态空间模型,在此基础上引入了新颖的粒子滤波技术,分析了该技术的可行性,推导了混沌调频信号频率跟踪的后验克拉美-罗(PCRB)下界,实验仿真验证了该技术的优越性。 Frequency tracking is a complex nonlinear problem, which is more difficult for the chaotic frequency modulation signal in which the traditional Extended Kalman Filter (EKF) can not work well. Thus, a new state space model for the frequency tracking is proposed, and the particle filter which can be used in nonlinear and non-Gaussian environments is introduced. Further more, the feasibility of the particle filter is analyzed, also the Posterior Cramer-Rao Bounds (PCRB) for the frequency tracking of the chaotic frequency modulation signal is derived. The simulation demonstrates the superiorities of particle filtering at last.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第1期104-107,共4页 Journal of Electronics & Information Technology
关键词 混沌调频 频率跟踪 粒子滤波 扩展卡尔曼滤波 Chaotic frequency modulation Frequency tracking Particle filtering Extended Kalman Filter (EKF)
  • 相关文献

参考文献12

  • 1Kennedy M P, Kolumban G, and Kis G, et al.. Performance evaluation of FM-DCSK modulation in multipath environments [J]. IEEE Trans. on Circuits Systems- I, 2001, 48(12): 1702-1717.
  • 2Callegari S, Rovatti R, and Setti G. Chaos-based FM signals: application and implementation issues [J]. IEEE Trans. on Circuits Systems-I, 2003, 8(50): 1141-1147.
  • 3Snyder D L. The State-Variable Approach to Continuous Estimation with Applications to Analog Communication Theory [M]. Boston, MA: MIT Press, 1969: 129-135.
  • 4LA S B F and Robert B R. Design of an extended Kalman filter frequency tracker [J]. IEEE Trans. on Signal Processing, 1996, 44(3): 739-742.
  • 5Bittanti S and Savaresi S M. Frequency tracking via extended Kalman filter: parameter design. Proceedings of the American Control Conference, Chicago, IL, USA, 2000, 4: 2225-2229.
  • 6Doucet A, Godsill S, and Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statist. Comput., 2000,10(3): 197-208.
  • 7Doucet A, Godsill S, and Andrieu C. Particle methods for change detection, system identification, and control [J]. Proc. of the IEEE, 2004, 92(3): 423-438.
  • 8Amtlard P P, Brossier J M, and Moissan E. Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops [J]. Signal Processing, 2003, 83(1): 151- 167.
  • 9Fischler E and Bobrovsky B Z. Mean time to loose lock of phase tracking by particle filtering [J]. Signal Processing, 2006, 86(1): 3481-3485.
  • 10Renate M and Nelson C. Bayesian reconstruction of chaotic dynamical systems [J]. Physical Review E, 2000, 62(3): 3535-3542.

二级参考文献11

  • 1Pecora L,Caroll T.Synchronization in chaotic systems[J].Physics Review Letter,1990,64:821 -823.
  • 2Kolumbán G,Kennedy M P,Chua L O.The role of synchronization in digital communications using chaospart Ⅱ:chaotic modulation and chaotic synchronization[J].IEEE Transactions on Circuits Systems-Ⅰ,1998,35:1 129-1 140.
  • 3Leung H,Zhu Z.Performance evaluation of EKF-based chaotic synchronization[J].IEEE Transactions on Circuits Systems-Ⅰ,2001,48:1 118-1 125.
  • 4Julier S,Uhlmann J,Durrant-Whyte H F.A new method for the nonlinear transformation of mean and covariance in filter and estimator[J].IEEE Transactions on Automatic Control,2000,45 (3):477 -482.
  • 5Azou S,Burel G.A complete receiver solution for a chaotic direct-sequence spread spectrum communication system[A].IEEE ISCAS[C].Kobe,Japan.IEEE Press,2005.3 813 -3 816.
  • 6Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistic Computing,2000,10 (3):197 -208.
  • 7Gustafsson F,Hrijac P.Particle filters for system identification with application to chaos prediction[A].SYSID[C].Rotterdam,NL:IFAC Publisher,2003.1 014-1 019.
  • 8Schon T,Gustafsson F.Particle filters for system identification of state-space models linear in either parameters or states[A].SYSID[C].Rotterdam,NL:IFAC Publisher,2003.1 287 -1 292.
  • 9Gaustafsson F,Hriljac P.Particle filters for prediction of chaos[A].The 13^th IFAC Symposium on System Identification[C].Rotterdam,NL:IFAC Publisher,2003.589-594.
  • 10Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE,1993,140 (2):107-113.

共引文献4

同被引文献13

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2Barbarossa S. Parameter estimation of spread spectrum frequency hopping signals using time-frequency distributions [ C ]//Pro- cessing Workshop on Signal Processing Advances in Wireless Communications. 1997: 213-216.
  • 3Liu Xiangqian,Nicholas D Sidiropoulos, Ananthram Swami. Blind High-Resolution Localization and Tracking of Multiple Fre- quency Hopped Signals[ J ]. IEEE Transactions on Signal Processing, 2002, 50 (4) : 859-901.
  • 4Liu Xiangqian, Nicholas D. Sidiropoulos, Ananthram Swami. Joint Hop Timing and Frequency Estimation for Collision Reso- lution in FH Networks[ J ]. IEEE Transactions on Wireless Communications, 2005, 4 (6) : 3063-3074.
  • 5LV De-chao, FAN Jiang-tao, HAN Gang-weng. Particle Filter[ J]. IEEE Transactions on Signal Processing, 2005, 53 (7) : 2279 -2289.
  • 6Pitt M K, Shephard N. Filtering via Simulation: Auxiliary Particle Filters[ J]. Journal of the American Association, 1999, 94 (446) : 590-599.
  • 7Alexandros Valyrakis, Efthimios E Tsakonas, Nicholas D Sidiropoulos, et al. Stochastic Modeling and Particle Filtering Algo- rithms for Tracking a Frequency-Hopped Signal[ J ]. IEEE Transactions on Signal Processing, 2009, 57 ( 8 ) : 3108-3118.
  • 8XU Maoge,SONG Yaoliang,LIU Liwei.Adaptive Joint Synchronization and Decryption Chaotic Secure Communication Receivers[J].Chinese Journal of Electronics,2008,17(1):161-164. 被引量:1
  • 9张曦,王星,杜兴民.基于小波变换的跳频信号参数盲估计[J].电路与系统学报,2009,14(4):60-65. 被引量:19
  • 10范海宁,郭英.一种新的跳频信号参数盲估计算法[J].信号处理,2009,25(11):1754-1758. 被引量:13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部