期刊文献+

垂直下降管散体颗粒换热实验台设计与应用 被引量:7

Design and Experiment of Downward Vertical Tube for Heat Transfer of Particles
下载PDF
导出
摘要 为研究陶瓷球固体热载体与生物质粉颗粒及空气的换热机理,设计了一种分离式垂直下降管颗粒换热实验装置,该装置可以进行陶瓷球和生物质粉2种流动特性完全不同的散体颗粒的换热实验研究。喂料实验表明:陶瓷球和生物质颗粒下料均匀可调、分离完全。根据90℃陶瓷球与室温空气换热实验数据,分析计算出陶瓷球与空气的对流换热系数为291.3 W/(m2.K);以陶瓷球质量流量为1.0、1.2、1.4 kg/min,陶瓷球与生物质粉质量比为15、20、25进行的颗粒换热实验结果表明,随陶瓷球流量、陶瓷球与生物质粉质量比的增大生物质粉升温增大。 In order to investigate the heat exchange mechanism between the ceramic balls heat carrier, biomass particles and air, a downward vertical flow tube of particles separation apparatus was developed and the heat exchange experiments with ceramic balls heat carrier and biomass particles can be conducted with the apparatus. The feeding experiments of particles showed that the feeding rate of the ceramic balls and the biomass particles were stable and these two kinds of particles were separated completely. Based on the data obtained from the heat exchange experiments among the ceramic balls at 90~2 and the air at room temperature, the convective heat exchange coefficient between the ceramic balls and the air was worked out and the value was about 291.3 W/(m2" K). The heat transfer experiments of ceramic balls and biomass particles at the condition of ceramic balls' mass flow rate were 1.0, 1.2 and 1.4 kg/min, mass ratio of ceramic balls and biomass particles were 15, 20 and 25 respectively. The results indicate that the temperature variation of the biomass particles increases with the increase of ceramic balls mass flow rate and the mass ratio of ceramic balls and biomass particles.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2009年第1期100-104,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(50576048 50876056) 国家"863"高技术研究发展计划资助项目(2007AA05Z451)
关键词 生物质能 垂直下降管 换热装置 设计 实验 Biomass energy, Downward vertical tube, Heat transfer equipment, Design, Experiment
  • 相关文献

参考文献10

  • 1郝培业.混合状态下散体的传热过程研究[J].农业机械学报,1996,27(3):82-86. 被引量:2
  • 2Caglar A, Demirbais A. Conversion of cotton cocoon shell to liquid products by pyrolysis [ J ]. Energy Conversion & Management, 2000, 41(16) : 1749- 1756.
  • 3Ozlem Onay, Mete Koekar O. Slow, Fast and flash pyrolysis of rapeseed[J]. Renewable Energy, 2003, 28(6):2417- 2433.
  • 4Ozlem Onay, Mete Kockar O. Fixed-bed pyrolysis of repeseed[J]. Biomass and Bioenergy, 2004, 26(3) :289-299.
  • 5Goyal H B, Diptendu Seal, Saxena R C. Bio-fuels from thermochemical conversion of renewable resources: a review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(1):504-517.
  • 6Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass[J]. Energy Conversion and Management, 2000, 41(6) :633-646.
  • 7Bridgwater A V. Principles and practice of biomass fast pyrolysis processes for liquids[J]. Journal of Analytical and Applied Pyrolysis, 1999, 51 ( 1 ) : 3 - 22.
  • 8Rong Degang. DEM simulation of hydrodynamics, heat transfer and combustion in fluidized beds [D]. Tokyo: Tokyo University of Agriculture and Technology, 2000.
  • 9何芳.生物质热解液化过程分析及实验[D].上海:上海理工大学,2004.
  • 10Mansoori Z, Saffar-Avval M, Basirat Tabrizi H, et al. Inter-particle heat transfer in a riser of gas-solid turbulent flows[J]. Powder Technology, 2005, 159( 1 ) : 35 - 45.

共引文献1

同被引文献79

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部