期刊文献+

基于虚拟仪器技术的田间多光谱视觉系统设计 被引量:5

In-field Multi-spectral Computer Vision System Design Based on Virtual Instrument Technology
下载PDF
导出
摘要 设计了一套田间多光谱虚拟仪器视觉系统。系统使用高分辨率的多光谱(近红外、红光和绿光)相机MS3100,拍摄作物生长期的多光谱图像,采用Labview及其视觉模块编写图像的采集、处理和分析程序,实时测取作物各个光谱波段的反射率。田间试验表明,该系统可以准确地对图像中的作物进行识别,求取作物的光谱反射特征,在2.4 m×1.8 m的视窗内,每组图像的采集和处理时间平均为311 ms,满足田间精准变量投入的在线工作要求。 An in-field multi-spectral computer vision system was developed using virtual instrument for capturing crop growth status precisely in real time to supervise a variable rate application. The system used a high resolution multi-spectral camera (MS3100) of acquiring excellent multi-spectral images (near-infrared, red and green) to shoot crop images. Labview and its vision development module were adopted to do image acquisition, processing and analysis programs for measuring the crop reflectance of red, green and near-infrared. The test trail of system shows that it can analyze the crop multi-spectral images and compute the spectral characteristics correctly. The average running time of acquiring and processing images of each group (NIR, R and G) were 311 ms in the range of 2.4 m× 1.8 m. The running speed of system can satisfy the in-field on-line job of the variable precision application.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2009年第1期157-161,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家“863”高技术研究发展计划资助项目(2006AA10A305-7) 广东省高等学校人才引进科研资助项目
关键词 农田信息采集 多光谱视觉 虚拟仪器 图像处理 Field information acquisition, Multi-spectral computer vision, Virtual instrument, Image processing
  • 相关文献

参考文献12

  • 1Sui R, Wilkerson J B, Hart W E, et al. Muti-spectral sensor for detection of nitrogen status in cotton [J ]. Applied Engineering in Agriculture, 2004, 21(2) : 167 - 172.
  • 2Price J C, Bausch W C. Leaf area index estimation from visible and near-infrared reflectance data[J]. Remote Sensing of Environment, 1995,52( 1 ) : 55 - 65.
  • 3Scharf P C, Lory J A. Calibration of remotely sensed corn color to predict nitrogen need [ C ]//Proceedings of Fifth International Conference on Precision Agriculture (CD), 2000, Bloomington, MN, USA.
  • 4Riedell W E, Hesler L S, Osborne S, et al. Remote sensing of insect damage in wheat[C]//Proceedings of Fifth International Conference on Precision Agriculture (CD), 2000, Bloomington, MN, USA.
  • 5Qin Zhihao, Zhang Minghua. Detection of rice sheath blight for in-season disease management using multispectral remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2005, 7(2):115-128.
  • 6Du Qian, Chang Nibin, Yang Chenghai, et al. Combination of multi-spectral remote sensing, variable rate technology and environmental modeling for citrus pest management[J]. Journal of Environmental Management, 2008, 86(1) :14-26.
  • 7Zhang Naiqian, Wang Maohua, Wang Ning. Precision agriculture-a worldwide overview[J]. Computers and Electronics in Agriculture, 2002, 36 (2 - 3) : 113 - 132.
  • 8Li Hong, Lascano Robert J, Barnes Edward M, et al. Multispectral reflectance of cotton related to plant growth, soil water and texture, and site elevation[J]. Agronomy Journal, 2001,93(6) : 1327-1337.
  • 9Spectral and Polarization Configuration Guide for MS Series 3-CCD Cameras. Geospatial Systems Incorporated.
  • 10Kim Yunseop, Reid John F, Zhang Qin. Fuzzy logic control of a muhispectral imaging sensor for in-field plant sensing[J ]. Computers and Electronics in Agriculture, 2007, 60(2) :279-288.

二级参考文献9

共引文献9

同被引文献38

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部