期刊文献+

一类具有可修故障和不可修故障的两部件并联可修系统的适定性问题 被引量:4

The Well-posedness on a Class of Two-unit Parallel Repairable System with Repairable Failures and Non-repairable Failures
原文传递
导出
摘要 主要用强连续半群理论,研究了一类具有可修故障和不可修故障的两部件并联系统非负时间依赖解的存在惟一性问题. A two-unit parallel studied in this paper, we prove of the system by using strongly system with repairable failures and non-repairable failures is that there exists a unique nonnegative time-dependent solution continuous semigroup theory.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第1期177-183,共7页 Mathematics in Practice and Theory
关键词 可修系统 不可修系统 Volterra算子方程 强连续半群(C0-半群) 时间依赖解 repairable system non-repairable system Volterra operator equation strongly continuous semigroup(C0-semigroup) time-dependent solution
  • 相关文献

参考文献12

二级参考文献33

  • 1徐厚宝,郭卫华,于景元,朱广田.带有缓冲库的串联CIMS渐近稳定性分析[J].系统工程理论与实践,2004,24(5):91-96. 被引量:6
  • 2郭卫华,吴松丽,徐厚宝.一类可修的人机系统解的渐近稳定性[J].系统工程理论与实践,2004,24(8):91-95. 被引量:7
  • 3G F塞蒙斯 张理京(译).微分方程[M].北京:人民教育出版社,1981.432-435.
  • 4Lam Yeh. The Rate of Occurrence of Pailures. J. Appl. Prob., 1999, 34(1): 234-247.
  • 5Dhillon B S, Anuden O C. Common-cause Failure Analysis of a Non-identical Unit Paralley System with Arbitarily Distributed Repair Times. Microelectron Reliab, 1993, 33(1): 87-103.
  • 6Surendra M Gupta. Stochastic Analysis of Systems with Primary and Secondary Failures. Microelecron Reliab, 1995, 35(1): 65-71.
  • 7Pandey D, Mendus Jacob. Cost Analysis Availability and MTTF of a Three State Standby Complex System under Common Cause and Human Failures. Microelecron Reliab, 1995, 35(1): 91-95.
  • 8Yang Nianfu, Dhillon B S. Availability Analysis of a Repairable Standby Human-machine System.Microelecron Reliab, 1995, 35(11): 1401-1413.
  • 9Gupur Geni, Li Xue-zhi, Zhu Guang-tian. Functional Analysis Method in Queueing Theory. London:Research Information Ltd., 2001.
  • 10Pazy A. Semigroups of Linear Operators and Application to Partial Differential Equations. New York: Springer-Verlag, 1983.

共引文献125

同被引文献11

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部