期刊文献+

分片支撑矢量机 被引量:3

Piecewise Support Vector Machines
下载PDF
导出
摘要 文中借鉴了分段线性识别的基本思想,提出了分片支撑矢量机模型.该模型首先将特征空间剖分成若干子空间,在每个子空间中基于支撑矢量机构造一个最优分类面,然后,将各个分类面链接起来构成一个分片最优分类面以逼近理论上的最优分类超曲面.同时,文中还从理论上分析探讨了其推广能力的界,为分片支撑矢量机模型提供了坚实的基础.最后,经典双螺旋线数据实验结果表明,相对于传统支撑矢量机,分片支撑矢量机的计算速度、分类能力以及推广能力均有了明显提高. A novel piecewise support vector machines (PSVM) model is provided in this paper; which used the traditional piecewise linear recognition method for reference. In this new model, the feature space was firstly partitioned into several subspaces, then the piecewise classification surface was developed by linking the optimal classification surfaces in each subspaces based on SVM. As the experimental results shown, validated with the Two Spiral Data and the actually measuring data, the performance of PSVM such as computational efficiency, classification, capa- bility and generalized capability are improved obviously in contrast to SVM.
出处 《计算机学报》 EI CSCD 北大核心 2009年第1期77-85,共9页 Chinese Journal of Computers
基金 国家自然科学基金(60402032)资助~~
关键词 分段线性 支撑矢量机 空间剖分 分片 识别 piecewise linear SVM space partition piecewise recognition
  • 相关文献

参考文献10

二级参考文献31

  • 1程云鹏 张凯院 等.矩阵理论[M].西安:西北工业大学出版社,1989..
  • 2Ingo Steinwart, On the influence of the kernel on the generalization ability of support vector machines. Department of mathematics and computer science, Friedrich Schiller University(Jena): Technical Report TR-01-01, 2001 (Available as http://www. minet. uni-jena. de /Math-Net /reports/rep-com.html).
  • 3Shun-ichi Amari, Si Wu. Improving support vector machine classifiers by modifying kernel functions. Neural Networks,1999, 12:783-789.
  • 4Vapnik V. The Nature of Statistical Learning Theory. New York:Verlag, 1995.
  • 5Scholkpf B. Support vector learning[Ph D dissertation]. Berlin University, Berlin, 1997.
  • 6Oja E. Subspace Methods of Pattern Recognition. Hertfordshire: Research Studies Press Ltd. ,1983.
  • 7Lodha S K, Franke R. Scattered data techniques for surfaces.In: Proceedings of Dagstuhl Conference on Scientific Visualization. Washington, 1999. 182-222.
  • 8Guan L T et al. Computer Aided Geometric Design. Beijing:CHEP & Springer, 1999.
  • 9Vapnik V,Chapelle O. Bounds on error expectation for support vector machines. Neural Computation, 2000, 12( 9): 2013-2036.
  • 10Chapella O, Vapnik V. Model selection for support vector machines. In: Solla S A, Leen T K,Muller K Reds. Advances in Neural Information Processing Systems. Cambridge: The MIT Press, 1999.

共引文献380

同被引文献33

  • 1陆从德,张太镒,胡金燕.基于乘性规则的支持向量域分类器[J].计算机学报,2004,27(5):690-694. 被引量:21
  • 2毛韶阳,李肯立.优化K-means初始聚类中心研究[J].计算机工程与应用,2007,43(22):179-181. 被引量:26
  • 3Vapnik V N. The Nature of Statistical Learning Theory[M].New York:springer-verlag,1995.
  • 4Vapnik V N. Statistical Learning Theory[M].New York:wiley,1998.
  • 5Cortes C,Vapnik V N. Support vector networks[J].Machine Learning,1995,(03):273-297.
  • 6Tax D M J,Duin R P W. Support vector data description[J].Machine Learning,2004,(01):45-66.doi:10.1023/B:MACH.0000008084.60811.49.
  • 7Shivaswamy P,Jebara T. Ellipsoidal kernel machines[A].http://www.star.umn.cdu/~ aistat/proceedings/data/papers/061.pdf,2010.
  • 8Sch(o)lkopf B,Smola A,Williamson R. New support vector algorithms[J].Neural Computation,2000,(05):1207-1245.doi:10.1162/089976600300015565.
  • 9Bennett K,Demiriz A. Semi-supervised support vector machines[A].Cambridge,MA:The MIT Press,1999.368-374.
  • 10Chung F L,Wang S T,Deng Z H. Fuzzy kernel hyperball perceptron[J].Applied Soft Computing Journal,2004,(01):67-74.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部