期刊文献+

仅有x-分量耦合的非恒同Lorenz系统的渐近同步 被引量:1

Asymptotic Synchronization of the Coupled Nonidentical Lorenz Equations with the x-component Coupling
原文传递
导出
摘要 考虑外部耦合格式为n×n阶实对称不可约,行和为零且对角线以外的元素非正的矩阵,内部耦合格式为仅有x-分量参与耦合的非恒同Lorenz格点系统的渐近同步.运用Lyapunov稳定性理论讨论系统解的一致有界耗散性.并在此基础上采用Cauchy-Schwarz不等式证明当耦合强度足够大时仅有x-分量参与耦合的非恒同Lorenz格点系统的解出现渐近同步,即系统解的任意两个对应分量的差在时间趋向于无穷时是一个小的有界量. The asymptotic synchronization in a lattice of xi-coupled nonidentical Lorenz equations is considered, the external coupling matrix is an n × n irreducible symmetric real matrix having zero row sums and nonpositive off-diagonal elements. The uniform bounded dissipativeness of the coupled Lorenz systems is discussed by Lyapunov stability theory. Under this condition, applying Cauchy-Schwarz inequality to prove that asymptotic synchronization occurs for the coupled Lorenz systems with x-component coupling provided the coupling coefficient is sufficiently large. That is, the difference between any two components of a solution is bounded by the quantity O(ε) as t →∞, where ε is the maximal deviation of parameters of nonidentical Lorenz Equations.
出处 《应用数学学报》 CSCD 北大核心 2009年第1期121-131,共11页 Acta Mathematicae Applicatae Sinica
基金 上饶师范学院院级科技课题资助项目.
关键词 x-分量耦合 非恒同Lorenz系统 耦合强度 渐近同步 x-component coupling nonidentical Lorenz equations coupling coefficient asymptotic synchronization
  • 相关文献

参考文献13

  • 1Pecora L M, Carroll T L. Synchronization in Chaotic Systems. J. Phys. Rev. Lett, 1990, 64:821-824
  • 2Heagy J F, Carroll T L, Pecora L M. Synchronous Chaos in Coupled Oscillator Systems. J. Phys. Rev. E., 1994, 50:1874-1885
  • 3Lu J H, Yu X H, Chen G R. Chaos Synchronization of General Complex Dynamical Networks. J. Physica A, 2004, 334:281-302
  • 4Lu J H, Yu X H, Chen G R, Cheng D Z. Characterizing the Synchronizability of Small-word Dynamical Networks. J. IEEE Trans. Circuits Syst. I, 2004, 51(4): 787-796
  • 5Lu J H, Chen G R. A Time-varying Complex Dynamical Network Model and Its Controlled Synchronization Criteria. J. IEEE Trans. Automat. Contr., 2005, 50(6): 841-846
  • 6Chiu C H, Lin W W, Peng C C. Asymptotic Synchronization in Lattices of Coupled Nonidentical Lorenz Equations. J. Int. J. Bifurcation and Chaos., 2000, 10(12): 2717-2728
  • 7Afraimovich V S, Lin W W. Synchronization in Lattices of Coupled Oscillators with Neumann/Periodic Boundary Conditions. J. Dyn. Stab. Syst., 1998, 13:237-264
  • 8Afraimovich V S, Chow S N, Hale J K. Synchronization in Lattices of Coupled Oscillators. J. Physica D, 1997, 103:442-451
  • 9Chiu C H, Lin W W, Wang C S. Synchronization in Lattices of Coupled Oscillators with Various Boundary Conditions. Y. Nonlinear Analysis, 2001, 46:213- 229
  • 10Lin W W, Peng C C. Chaotic Synchronization in Lattices of Partial-state Coupled Lorenz Equations. J. Physica D, 2002, 166:29-42

同被引文献14

  • 1杨联华.部分耦合非恒同单摆系统的渐近同步[J].苏州大学学报(自然科学版),2007,23(4):15-18. 被引量:1
  • 2Heagy J F,Carroll T L,Pecora L M. Synchronous Chaos in Coupled Oscillator Systems[J].J Phys Rev E,1994.1874-1885.
  • 3Lü J H,Yu X H,Chen G R. Chaos Synchronization of General Complex Dynamical Networks[J].J Physica A,2004.281-302.
  • 4Lii J H,Yu X H,Chen G R,Cheng D Z. Characterizing the Synchronizability of Small-word Dynamical Networks[J].J IEEE Trans Circuits Syst I,2004,(04):787-796.
  • 5Lü J H,Chen G R. A Time-varying Complex Dynamical Network Model and Its Controlled Synchronization Criteria[J].J IEEE Trans Automat Contr,2005,(06):841-846.doi:10.1109/TAC.2005.849233.
  • 6Chiu C H,Lin W W,Peng C C. Asymptotic Synchronization in Lattices of Coupled Nonidentical Lorenz Equations[J].J Int J Bifurcation and Chaos,2000,(12):2717-2728.doi:10.1142/S0218127400001778.
  • 7Afraimovich V S,Lin W W. Synchronization in Lattices of Coupled Oscillators with Neumann/Periodic Boundary Conditions[J].J Dyn Stab Syst,1998.237-264.
  • 8Afraimovich V S,Chow S N,Hale J K. Synchronization in Lattices of Coupled Oscillators[J].J Physica D,1997.442-451.
  • 9Chiu C H,Lin W W,Wang C S. Synchronization in Lattices of Coupled Oscillators with Various Boundary Conditions[J].J Nonlinear Analysis,2001.213-229.
  • 10Lin W W,Peng C C. Chaotic Synchronization in Lattices of Partial-state Coupled Lorenz Equations[J].J Physica D,2002.29-42.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部