期刊文献+

Effectiveness of fluidized pellet bed for removing soluble contaminants 被引量:7

Effectiveness of fluidized pellet bed for removing soluble contaminants
下载PDF
导出
摘要 Fluidized pellet bed (FPB) has been successfully applied in water and wastewater treatment. However, the removal mechanism of contaminants especially the soluble ones, is still unclear. This study aimed to evaluate the effectiveness of FPB reactor for removing soluble contaminants from synthetic wastewater. By only coagulation through jar test operation with addition of polyaluminium chloride (PAC1) as primary coagulant and polyacryamide (PAM) as coagulant-aid, the removals of soluble chemical oxygen demand (COD), total phosphorus (TP), and NH4^+-N were found to be only 2.2%-7.5%, 5.7%-25.5%, and 9.9%-18.5%, respectively. However, by FPB operation under the same dosage of coagulants, these values increased to 82.7%, 37.2%, and 50%, indicating that the formation of pellets in the FPB effectively enhanced the removal of soluble contaminants. By careful comparison of the settleablility and filterability of the pollutants after coagulation, the originally soluble contaminants could be divided into three groups, namely: (1) coagulated-and- settleable, (2) coagulated-but-nonsettleable, and (3) uncoagulable. It was found that not only the first two groups but also a large part of the third group could be effectively removed by FPB operation. However, the mechanism for the removal of the uncoagulable pollutants by FPB operation still needs further investigation. Fluidized pellet bed (FPB) has been successfully applied in water and wastewater treatment. However, the removal mechanism of contaminants especially the soluble ones, is still unclear. This study aimed to evaluate the effectiveness of FPB reactor for removing soluble contaminants from synthetic wastewater. By only coagulation through jar test operation with addition of polyaluminium chloride (PAC1) as primary coagulant and polyacryamide (PAM) as coagulant-aid, the removals of soluble chemical oxygen demand (COD), total phosphorus (TP), and NH4^+-N were found to be only 2.2%-7.5%, 5.7%-25.5%, and 9.9%-18.5%, respectively. However, by FPB operation under the same dosage of coagulants, these values increased to 82.7%, 37.2%, and 50%, indicating that the formation of pellets in the FPB effectively enhanced the removal of soluble contaminants. By careful comparison of the settleablility and filterability of the pollutants after coagulation, the originally soluble contaminants could be divided into three groups, namely: (1) coagulated-and- settleable, (2) coagulated-but-nonsettleable, and (3) uncoagulable. It was found that not only the first two groups but also a large part of the third group could be effectively removed by FPB operation. However, the mechanism for the removal of the uncoagulable pollutants by FPB operation still needs further investigation.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第1期13-17,共5页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China (No. 50621140001, 50708089) the High-Tech Research and Development Program (863) of China (No. 2006AA06Z328).
关键词 fluidized pellet bed COAGULATION soluble contaminants FRACTION fluidized pellet bed coagulation soluble contaminants fraction
  • 相关文献

参考文献1

二级参考文献1

共引文献4

同被引文献60

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部