期刊文献+

基于RS-ANN的煤矿安全控制 被引量:4

Coal mine safe control model based on RS—ANN
原文传递
导出
摘要 针对目前煤矿安全管理的现状,提出利用粗集-神经网络对煤矿安全进行控制.模型在基于人-机-环境理论基础上,全面分析了影响煤矿安全的因素,利用基于蚁群算法的粗糙集属性约简对安全因素进行分析.将粗糙集方法融入神经网络实现优势融合可以去掉冗余输入信息、减小神经网络构成系统的复杂性.提高容错及抗干扰的能力.在此基础上,利用人工神经网络的预测功能,预测影响煤矿安全的关键因素,并根据预测结果提出有针对性的安全技术措施加以防范.用同一组数据比较该方法与典型BP网络的预测效果,结果表明该方法明显优于BP网络. According to the current management of coal mine safety status, a coal mine safe control model based on rough sets-artificial neural network (RS-ANN) was established. Based on Man-Machine-Environment theory, safe factors that effect the realization of coal mine safe aim were obtained. Combining the Rough sets theory that based on the ant colony algorithm with the Neural Networks, the super combination can realize to delete the superfluous inputting information, reduce the complexity and improve the interfere resistance. Therefore, a basic thought and specific method to set up Rough sets-Neural Network system to control the coal mine safe is presented, which introduce rough sets reduction method and obtain the mini safe factor in the historic data.At last, the neural network system can control the expect aim of coal mine safe management. The forecast results show that this approach is better than the typical BP NN with the same data.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2009年第1期174-180,共7页 Systems Engineering-Theory & Practice
关键词 煤矿安全控制 安全控制指标 粗糙集 蚁群算法 人工神经网络 coal mine safe control safe control index rough sets the ant colony algorithm artificial neural networks
  • 相关文献

参考文献8

  • 1杨富.我国安全生产的形势和任务[J].中国安全科学学报,2000,10(2):1-6. 被引量:20
  • 2Fang D P. Construction safty in China: The past present and future[J]. Implementation of Salty and Health on Construction Site, 1999: 69-76.
  • 3罗云.21世纪安全管理科学展望[J].安全与健康,2004(06S):31-32. 被引量:1
  • 4Pawlak Z, Slowinski A. Rough set approach to multi-attribute decision analysis[J]. European Journal of Opera- tional Reasearch, 1994, 72: 443-459.
  • 5Wu M J, Suen C Y. Fractal information theory and application[J]. J of East China Norm Univ, 1996(1): 19-30.
  • 6Pawlak A, Busse J G. Rough sets[J]. Communications on the ACM, 1995, 38(11): 89-95.
  • 7Pawlak Z. Rough Sets -- Theoretical Aspects of Reasoning about Data[M]. Klystron Academic Publisher, 1994.
  • 8Colorni A, Dorigo M, Maniezzo V, et al. Distributed optimization by ant colonies[C]//Proc of the 1st European Conference on Artificial Life. Amsterdam: Elsevier Publishing, 1991:134- 142 .

共引文献19

同被引文献36

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部