期刊文献+

珠江河口混浊高产水域叶绿素a浓度的遥感估算模型 被引量:6

Remote sensing retrieval of chlorophyll-a in turbid,productive estuaries:A case study of Zhujing River estuary
下载PDF
导出
摘要 近年来为提高混浊高产水体叶绿素a浓度的估算精度,Gitelson等提出了一种基于红与近红外3个波段遥感反射率的概念模型。文章基于2004年的实测数据,检验该概念模型在珠江河口水域的适用性,估算该概念模型以及它的特殊形式——两波段模型对应的光谱位置,在此基础上构建利用卫星数据提取珠江河口水域叶绿素a浓度的遥感估算模型。结果表明,珠江河口混浊高产水域叶绿素a浓度与三波段模型和两波段模型均有很强的线性相关性,相关系数分别达到0.91与0.88。构建的三波段模型和两波段模型估算的叶绿素a浓度与实测叶绿素a浓度的均方根差(RMSE)分别为5.82mg.m-3和6.53mg.m-3,精度高于其他常用算法。根据MERIS的波段设置构建的三波段模型估算的叶绿素a浓度与实测叶绿素a浓度的RMSE为6.47mg.m-3,显示了良好的应用潜力。 Recently a conceptual model based on the reflectance in three spectral bands of red and near infrared ranges of the speetrum was suggested for retrieving ehlorophyll a (Chl a) concentration in turbid, productive waters. The objeetive of this study is to validate the applieability of the model by selecting spectral positions of this three-band model and its special case, the two-band model, to evaluate the performance of the models based on the spectral and Chl a data measured in the Zhujiang River estuary. Strong linear relationships were found between the Chl a concentration and the three-band model and between the Chl a concentration and the two-band model in the estuary, with correlation coefficients of 0.91 and 0.88, respec- tively. The root mean square errors (RMSE) between measured Chl a concentration and the Chl a concentrations estimated by the three-band model and the two-band model are 5.82mg · m^-3 and 6.53mg · m^-3, respectively. The RMSE between measured Chl a concentration and the Chl a concentration estimated by the three-band model based on MERIS bands is 6.47 mg · m^-3, demonstrating the robustness of this algorithm for MERIS Chl a retrieval.
出处 《热带海洋学报》 CAS CSCD 北大核心 2009年第1期15-20,共6页 Journal of Tropical Oceanography
基金 863计划项目(2004AA639860) 国家自然科学基金项目(40306028)
关键词 珠江口 叶绿素 反演 遥感反射率 Zhujiang River estuary ehlorophyll-a (Chl a) retrieval remote sensing reflectance
  • 相关文献

参考文献18

  • 1International Ocean Colour Coordinating Group. Remote sensing of ocean colour in coastal, and other optically complex waters[R]. IOCCG Report, 2000, No 3. Dart mouth, Canada.
  • 2DALL'OLMO G, GITELSON A A. Effect of bio-optical parameter variability on the remote estimation of chloro- phyll a concentration in turbid productive waters: Experimental results[J]. Applied Optics, 2005, 44:412 -422.
  • 3GITELSON A A, GARBUZOV G. Quantitative remote sensing methods for real time monitoring of inland waters Quality [J]. International Journal of Remote Sensing, 1993, 14(7) : 1 269-1 295.
  • 4疏小舟,尹球,匡定波.内陆水体藻类叶绿素浓度与反射光谱特征的关系[J].遥感学报,2000,4(1):41-45. 被引量:184
  • 5RUDDICK K G, GONS H J, RIJKEBOER M, at el. Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optical error properties [J]. Applied Optics, 2001, 40:3575 -3585.
  • 6GITELSON A A, KONDRATYEV K Y. Optical models of mesotrophic and eutrophic water bodies [J]. International Journal of Remote Sensing, 1991, 12: 373-385.
  • 7RUNDQUIST D C, HAN L, SCHALLES J F, et al. Remote measurement of algal chlorophyll in surface waters: The case for the first derivative of reflectance near 690nm [J]. Photogrammetric Engineering and Remote Sensing, 1996, 62: 195-200.
  • 8GOWER J F R, DOERFFER R, BORSTAD G A. Interpre tation of the 685nm peak in water-leaving radiance spectra in terms of fluoreseence, absorption and scattering, and its ob servation by MERIS[J]. International Journal of Remote Sensing, 1999, 20:1 771-1786.
  • 9HU C M, MULLER KARGER F E, TAYLOR C, et al. Red tide detection and tracing using MODIS fluorescence data: a regional example in SW Florida coastal waters[J], Remote Sensing of Environment, 2005, 97: 311-321.
  • 10NEVILLE R A, GOWER J F R. Passive remote sensing of phytoplankton via chlorophyll a Iluoreseenee[-J~. Journal of Geophysical Research, 1977, 82:3 487-3 493.

二级参考文献34

  • 1佘丰宁,蔡启铭,陈宇炜,李旭文.水体叶绿素含量的遥感定量模型[J].湖泊科学,1996,8(3):201-207. 被引量:41
  • 2蒲瑞良 宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.8.
  • 3Han L, Donald C, Rundquitst D C. Comparison of NIR/RED ratio and first derivative of reflectance in estimating chlorophyll concentration : a case study in a turbid reservoir. Remote Sensing of Environment, 1997,62:253 - 261.
  • 4Dekker A G, Peters S W. The use of the Thematic Mapper for the analysis of eutrophic lakes: a case study in the Netherlands. Int J Remote Sensing, 1993,14(5):799 -821.
  • 5Gitelson A A, Garbuzov G. Quantitative remote sensing methods for real-time monitoring of inland waters quality. Int J Remote Sensing, 1993,14 (7) :1269 - 1295.
  • 6Gitelson A A. The peak near 700 nm on radiance spectra of algae and water relationships of its magnitude and position with chlorophyll concentration. Int J Remote Sensing, 1992,13:3367 -3373.
  • 7Gitelson A A, Keydan G P. Remote sensing of inland surface water quality measurements in the visible spectrum. Acta Hydrophysica. 1990, 14 : 1269 -1295.
  • 8Mittenzwey K-H, Gitelson A A, Lopatchenko A A ,et al. In-situ monitoring of water quality on the basis of spectral reflectance, lnternationale Revue der gesamten Hydrobiologie, 1988, 73:61 -72.
  • 9Melack J M, Pilorz S H. Reflectance spectral from eutrophic mono Lake, California, measured with the Air-borne visible and infrared imaging spectrometer (AVIRIS). SPIE, 1990,1298:202 - 212.
  • 10Vertucci F A, Likens G E. Spectral reflectance and water quality of Adirondack mountain region lakes. Limnol. Oceanogr, 1989,34(8):1656-1672.

共引文献199

同被引文献89

引证文献6

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部