期刊文献+

独立分量分析在说话人识别技术中的应用 被引量:2

Application of independent component analysis to speaker recognition technique
下载PDF
导出
摘要 独立分量分析方法能够将线性混合信号进行分离,得到统计独立的源信号,能用于提取组合语音的特征基函数。倒谱矢量符合ICA变换的假设条件,用ICA方法对MFCC特征进行转换得到ICA特征基,继而用于说话人识别,建立了一个基于独立分量分析的说话人识别系统。实验结果表明,在噪声环境下此系统具有更高的识别率。 Independent Component Analysis(ICA) is a new method to separate the observed mixtures so as to estimate the independent components and can be used to extract the feature bases functions.The characteristic of the cepstrum vector agrees with the assumption of the ICA transformation.ICA bases is transformed from improved robust Mel Frequency Cepstrum Coefficients(MFCC) by ICA and then used in speaker recognition.A novel speaker recognition system based on ICA is presented.The results of experiments show that the proposed system has a higher recognition rate in noisy environments.
出处 《声学技术》 CSCD 北大核心 2008年第6期863-866,共4页 Technical Acoustics
基金 国家自然科学基金资助项目(60272038) 广西自治区研究生教育创新计划项目
关键词 独立分量分析 说话人识别 矢量量化 高斯混合模型 independent component analysis speaker recognition vector quantization Gaussian mixture model
  • 相关文献

参考文献7

  • 1Ozkurt T E, Akgul T. Robust Text-independent speaker identification using bispectrum slice, signal processing and communications applications conference[A]. 2004. Proceedings of the IEEE 12th[C]. 2004, 418-421.
  • 2Deng J, Zheng T F, Song Z J, et al. Using predictive differential power spectrum and subband mel-spectrum centroid for robust speaker recognation in stationary noises[A]. The 4th International Conference on Machine Learning and Cybernetics[C]. 2005, 8: 4846-4851.
  • 3Hyvarinen A. New approximatioils of differential entropy for independent component analysis and projection pursuit [J]. Advance in Neural Information Processing Systems, 1998, 10: 273-279.
  • 4Hyvarinen A. Fast and robust tided-point algorithm for independent component analysis[J]. IEEE Trans on Neural Networks, 1999, 10(3): 626-634.
  • 5Jang Gil-Jin, Yun Seong-Jin, Oh Yung-Hwan. Feature vector transformation using independent component analysis and its application to speaker identification[J]. Euro Speech, 1999, 7(6): 767-770.
  • 6邱作春,曾庆宁.基于自适应波束形成和ICA的消噪系统[J].声学技术,2008,27(1):119-125. 被引量:1
  • 7屈微,刘贺平.基于独立分量分析和矢量量化的说话人识别[J].计算机应用,2005,25(10):2401-2403. 被引量:1

二级参考文献22

  • 1张智林,皮亦鸣,孙志坚.基于独立分量分析的降噪技术[J].电子科技大学学报,2005,34(3):296-299. 被引量:11
  • 2林秋华,郑永瑞,殷福亮.基于参考独立分量分析的语音增强方法[J].大连理工大学学报,2006,46(6):915-919. 被引量:7
  • 3范乐昊,邱晓晖,司海飞.基于独立分量分析的噪声消除技术[J].金陵科技学院学报,2006,22(4):45-48. 被引量:3
  • 4JANG GJ, YUN SJ, OH YH. Feature vector transformation using ICA and its application to speaker verification [ J]. Eurospeech,1999:767 - 770.
  • 5JANG GJ, LEE TW, OH YH. Learning statistically efficient features for speaker recognition [ A]. In proceedings ICASSP[C],2001.
  • 6CAO XR, LIU RW. General approach to blind source separation[J]. IEEE Trans. Signal Processing 1996, 78(4): 753 -766.
  • 7DUDA R, HART P, STORK D. Pattern Classification [ M]. Seconded. Wiley Interscience, New York, 2000.
  • 8REYNOLDS D, QUATIERI T, DUNN R. Speaker verification using adapted gaussian mixture models [J]. Digital Signal Processing 2000, 10 (1): 19 -41.
  • 9SONMEZ, M, HECK L, WEINTRAUB M, et al. A lognormal tied mixture model of pitch for prosody-based speaker recognition [ A].In Proc. 5th European Conference on Speech Communication and Technology, Eurospeech ( Rhodos, Greece) [C], 1997. 1391 -1394.
  • 10GERSHO A, GRAY R. Vector quantization and signal compression[M]. Kluwer Academic Publishers, Boston, 1991.

同被引文献21

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部