期刊文献+

具有最陡主瓣的最小方差时频分析

Time-frequency analysis of minimum variance with the steepest main lobe
下载PDF
导出
摘要 针对非平稳时间序列,基于最小方差谱估计提出自适应加窗的时频分析方法,所叠加的时间窗能够自适应地调整尺寸,使得所估计的谱具有最陡的瞬时主瓣以适应时频分析,从而获得满意的非平稳信号的时频分布。仿真结果以及与参考文献的方法比较表明,该方法能够提供更好的频率分辨率,时频分布性能更好。 Adaptive time-frequency analysis of non-stationary time sequences is proposed based on minimum variance spectral estimation.Time windows are added to the sequences with adaptive window size to make the power spectral characterize with the steepest main lobe for the time-frequency analysis with the best performances.
作者 沈希忠 孟光
出处 《声学技术》 CSCD 北大核心 2008年第6期888-891,共4页 Technical Acoustics
基金 上海市教育委员会重点学科建设项目资助(J51501)
关键词 非平稳 自适应 时变窗 主瓣 non-stationary adaptivity varying window main lobe
  • 相关文献

参考文献8

  • 1Proakis J, Rader C, Ling F, Nikias C, Moonen M, Proudler I. Algorithms for Statistical Signal Processing[M]. Englewood Cliffs, NJ: Prentice-Hall, 2002.
  • 2Ozgen M T. Extension of the Capon's spectral estimator to time-frequency analysis and to the analysis of polynomial-phase signals[J]. Signal Processing, 2003, 83(3): 575-592.
  • 3Chart S C, Zhang Z G, Tsui K M. Minimum Variance Spectral Estimation-Based Time Frequency Analysis for Nonstationary Time-Series. Circuits and Systems, 2007[A]. ISCAS 2007. IEEE International Symposium on[C]. 2007: 1815-1818.
  • 4Kay S M. Modem Spectral Estimation: Theory and Application[M]. Englewood Cliffs, NJ: Prentice-Hall, 1987.
  • 5Zhang Z G, Lau W Y, Chan S C. A new Kalman filter-based power spectral density estimation for nonstationary pressure signals[A]. Proc. 2006 IEEE International Symposium on Circuits and Systems[C]. Kos, Greece, 21-24 May 2006, 1619-1622.
  • 6焦人杰,侯丽敏.一种快速自适应噪声谱估计方法[J].声学技术,2007,26(4):735-740. 被引量:3
  • 7Capon J. High Resolution Frequency- Wavenumber spectram Analysis[J]. Proc. IEEE, 1969, 57(10): 1408-1418.
  • 8Lacoss R T. Data Adaptive Spectral Analysis Methods[J]. Geophysics, 1971, 36: 661-675.

二级参考文献7

  • 1Doblinger G.Computationally efficient speech enhancement by spectral minima tracking in sub-bands[A].in EUROSPEECH'95[C].Madrid,Spain,1995,9(18-21):1513-1516.
  • 2Martin R.Spectral subtraction based on minimum statistics[A].Seventh European Signal Processing Conference[C].1994,9:1182-1185.
  • 3Martin R.Noise power spectral density estimation based on optimal smoothing and minimum statistics[J].Speech and Audio Processing,2001,9(7):504-512.
  • 4Cohen I,Berdug B.Noise estimation by minima controlled recursive averaging for robust speech enhancement[J].Signal Processing,2002,9(1):12-15.
  • 5Walden A T,Percival D B,McCoy E J.Spectrum estimation by wavelet thresholding of multitaper estimators[J].Signal Processing,1998,46(12):3153-3165.
  • 6HU Y,Loizou P.Speech enhancement based on wavelet thresholding and multitaper spectrum[J].Speech and Audio Processing,2004,12(1):59-67.
  • 7Cohen I.Noise spectrum estimation in adverse environments:improved minima controlled recursive averaging[J].Speech and Audio Processing,2003,11(5):466-475

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部